- substr is Annex B
- substring silently flips its arguments if they're in the "wrong order", which is confusing
- slice is better than sliced bread (no pun intended) and also it works the same way on Arrays so there's less to remember
---
> I'd be down to just lint and enforce a single form just for the potential compression savings by using a repeated string.
_Originally posted by @sebmarkbage in https://github.com/facebook/react/pull/26663#discussion_r1170455401_
This adds `encodeReply` to the Flight Client and `decodeReply` to the
Flight Server.
Basically, it's a reverse Flight. It serializes values passed from the
client to the server. I call this a "Reply". The tradeoffs and
implementation details are a bit different so it requires its own
implementation but is basically a clone of the Flight Server/Client but
in reverse. Either through callServer or ServerContext.
The goal of this project is to provide the equivalent serialization as
passing props through RSC to client. Except React Elements and
Components and such. So that you can pass a value to the client and back
and it should have the same serialization constraints so when we add
features in one direction we should mostly add it in the other.
Browser support for streaming request bodies are currently very limited
in that only Chrome supports it. So this doesn't produce a
ReadableStream. Instead `encodeReply` produces either a JSON string or
FormData. It uses a JSON string if it's a simple enough payload. For
advanced features it uses FormData. This will also let the browser
stream things like File objects (even though they're not yet supported
since it follows the same rules as the other Flight).
On the server side, you can either consume this by blocking on
generating a FormData object or you can stream in the
`multipart/form-data`. Even if the client isn't streaming data, the
network does. On Node.js busboy seems to be the canonical library for
this, so I exposed a `decodeReplyFromBusboy` in the Node build. However,
if there's ever a web-standard way to stream form data, or if a library
wins in that space we can support it. We can also just build a multipart
parser that takes a ReadableStream built-in.
On the server, server references passed as arguments are loaded from
Node or Webpack just like the client or SSR does. This means that you
can create higher order functions on the client or server. This can be
tokenized when done from a server components but this is a security
implication as it might be tempting to think that these are not fungible
but you can swap one function for another on the client. So you have to
basically treat an incoming argument as insecure, even if it's a
function.
I'm not too happy with the naming parity:
Encode `server.renderToReadableStream` Decode: `client.createFromFetch`
Decode `client.encodeReply` Decode: `server.decodeReply`
This is mainly an implementation details of frameworks but it's annoying
nonetheless. This comes from that `renderToReadableStream` does do some
"rendering" by unwrapping server components etc. The `create` part comes
from the parity with Fizz/Fiber where you `render` on the server and
`create` a root on the client.
Open to bike-shedding this some more.
---------
Co-authored-by: Josh Story <josh.c.story@gmail.com>