forked from OSchip/llvm-project
2491 lines
90 KiB
C++
2491 lines
90 KiB
C++
//===-- HexagonVectorCombine.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// HexagonVectorCombine is a utility class implementing a variety of functions
|
|
// that assist in vector-based optimizations.
|
|
//
|
|
// AlignVectors: replace unaligned vector loads and stores with aligned ones.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/InstSimplifyFolder.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsHexagon.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
#include "HexagonSubtarget.h"
|
|
#include "HexagonTargetMachine.h"
|
|
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <map>
|
|
#include <optional>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "hexagon-vc"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class HexagonVectorCombine {
|
|
public:
|
|
HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
|
|
DominatorTree &DT_, TargetLibraryInfo &TLI_,
|
|
const TargetMachine &TM_)
|
|
: F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
|
|
TLI(TLI_),
|
|
HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
|
|
|
|
bool run();
|
|
|
|
// Common integer type.
|
|
IntegerType *getIntTy(unsigned Width = 32) const;
|
|
// Byte type: either scalar (when Length = 0), or vector with given
|
|
// element count.
|
|
Type *getByteTy(int ElemCount = 0) const;
|
|
// Boolean type: either scalar (when Length = 0), or vector with given
|
|
// element count.
|
|
Type *getBoolTy(int ElemCount = 0) const;
|
|
// Create a ConstantInt of type returned by getIntTy with the value Val.
|
|
ConstantInt *getConstInt(int Val, unsigned Width = 32) const;
|
|
// Get the integer value of V, if it exists.
|
|
std::optional<APInt> getIntValue(const Value *Val) const;
|
|
// Is V a constant 0, or a vector of 0s?
|
|
bool isZero(const Value *Val) const;
|
|
// Is V an undef value?
|
|
bool isUndef(const Value *Val) const;
|
|
|
|
// Get HVX vector type with the given element type.
|
|
VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const;
|
|
|
|
enum SizeKind {
|
|
Store, // Store size
|
|
Alloc, // Alloc size
|
|
};
|
|
int getSizeOf(const Value *Val, SizeKind Kind = Store) const;
|
|
int getSizeOf(const Type *Ty, SizeKind Kind = Store) const;
|
|
int getTypeAlignment(Type *Ty) const;
|
|
size_t length(Value *Val) const;
|
|
size_t length(Type *Ty) const;
|
|
|
|
Constant *getNullValue(Type *Ty) const;
|
|
Constant *getFullValue(Type *Ty) const;
|
|
Constant *getConstSplat(Type *Ty, int Val) const;
|
|
|
|
Value *simplify(Value *Val) const;
|
|
|
|
Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start,
|
|
int Length, int Where) const;
|
|
Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
|
|
Value *Amt) const;
|
|
Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
|
|
Value *Amt) const;
|
|
Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const;
|
|
Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize,
|
|
Value *Pad) const;
|
|
Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy,
|
|
Type *ToTy) const;
|
|
Value *vlsb(IRBuilderBase &Builder, Value *Val) const;
|
|
Value *vbytes(IRBuilderBase &Builder, Value *Val) const;
|
|
Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start,
|
|
unsigned Length) const;
|
|
Value *sublo(IRBuilderBase &Builder, Value *Val) const;
|
|
Value *subhi(IRBuilderBase &Builder, Value *Val) const;
|
|
Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
|
|
Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
|
|
|
|
Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID,
|
|
Type *RetTy, ArrayRef<Value *> Args,
|
|
ArrayRef<Type *> ArgTys = None) const;
|
|
SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec,
|
|
unsigned ToWidth) const;
|
|
Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values,
|
|
VectorType *ToType) const;
|
|
|
|
std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
|
|
|
|
unsigned getNumSignificantBits(const Value *V,
|
|
const Instruction *CtxI = nullptr) const;
|
|
KnownBits getKnownBits(const Value *V,
|
|
const Instruction *CtxI = nullptr) const;
|
|
|
|
template <typename T = std::vector<Instruction *>>
|
|
bool isSafeToMoveBeforeInBB(const Instruction &In,
|
|
BasicBlock::const_iterator To,
|
|
const T &IgnoreInsts = {}) const;
|
|
|
|
// This function is only used for assertions at the moment.
|
|
[[maybe_unused]] bool isByteVecTy(Type *Ty) const;
|
|
|
|
Function &F;
|
|
const DataLayout &DL;
|
|
AliasAnalysis &AA;
|
|
AssumptionCache &AC;
|
|
DominatorTree &DT;
|
|
TargetLibraryInfo &TLI;
|
|
const HexagonSubtarget &HST;
|
|
|
|
private:
|
|
Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi,
|
|
int Start, int Length) const;
|
|
};
|
|
|
|
class AlignVectors {
|
|
public:
|
|
AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
using InstList = std::vector<Instruction *>;
|
|
|
|
struct Segment {
|
|
void *Data;
|
|
int Start;
|
|
int Size;
|
|
};
|
|
|
|
struct AddrInfo {
|
|
AddrInfo(const AddrInfo &) = default;
|
|
AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
|
|
Align H)
|
|
: Inst(I), Addr(A), ValTy(T), HaveAlign(H),
|
|
NeedAlign(HVC.getTypeAlignment(ValTy)) {}
|
|
AddrInfo &operator=(const AddrInfo &) = default;
|
|
|
|
// XXX: add Size member?
|
|
Instruction *Inst;
|
|
Value *Addr;
|
|
Type *ValTy;
|
|
Align HaveAlign;
|
|
Align NeedAlign;
|
|
int Offset = 0; // Offset (in bytes) from the first member of the
|
|
// containing AddrList.
|
|
};
|
|
using AddrList = std::vector<AddrInfo>;
|
|
|
|
struct InstrLess {
|
|
bool operator()(const Instruction *A, const Instruction *B) const {
|
|
return A->comesBefore(B);
|
|
}
|
|
};
|
|
using DepList = std::set<Instruction *, InstrLess>;
|
|
|
|
struct MoveGroup {
|
|
MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
|
|
: Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
|
|
Instruction *Base; // Base instruction of the parent address group.
|
|
InstList Main; // Main group of instructions.
|
|
InstList Deps; // List of dependencies.
|
|
bool IsHvx; // Is this group of HVX instructions?
|
|
bool IsLoad; // Is this a load group?
|
|
};
|
|
using MoveList = std::vector<MoveGroup>;
|
|
|
|
struct ByteSpan {
|
|
struct Segment {
|
|
// Segment of a Value: 'Len' bytes starting at byte 'Begin'.
|
|
Segment(Value *Val, int Begin, int Len)
|
|
: Val(Val), Start(Begin), Size(Len) {}
|
|
Segment(const Segment &Seg) = default;
|
|
Segment &operator=(const Segment &Seg) = default;
|
|
Value *Val; // Value representable as a sequence of bytes.
|
|
int Start; // First byte of the value that belongs to the segment.
|
|
int Size; // Number of bytes in the segment.
|
|
};
|
|
|
|
struct Block {
|
|
Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
|
|
Block(Value *Val, int Off, int Len, int Pos)
|
|
: Seg(Val, Off, Len), Pos(Pos) {}
|
|
Block(const Block &Blk) = default;
|
|
Block &operator=(const Block &Blk) = default;
|
|
Segment Seg; // Value segment.
|
|
int Pos; // Position (offset) of the segment in the Block.
|
|
};
|
|
|
|
int extent() const;
|
|
ByteSpan section(int Start, int Length) const;
|
|
ByteSpan &shift(int Offset);
|
|
SmallVector<Value *, 8> values() const;
|
|
|
|
int size() const { return Blocks.size(); }
|
|
Block &operator[](int i) { return Blocks[i]; }
|
|
|
|
std::vector<Block> Blocks;
|
|
|
|
using iterator = decltype(Blocks)::iterator;
|
|
iterator begin() { return Blocks.begin(); }
|
|
iterator end() { return Blocks.end(); }
|
|
using const_iterator = decltype(Blocks)::const_iterator;
|
|
const_iterator begin() const { return Blocks.begin(); }
|
|
const_iterator end() const { return Blocks.end(); }
|
|
};
|
|
|
|
Align getAlignFromValue(const Value *V) const;
|
|
std::optional<MemoryLocation> getLocation(const Instruction &In) const;
|
|
std::optional<AddrInfo> getAddrInfo(Instruction &In) const;
|
|
bool isHvx(const AddrInfo &AI) const;
|
|
// This function is only used for assertions at the moment.
|
|
[[maybe_unused]] bool isSectorTy(Type *Ty) const;
|
|
|
|
Value *getPayload(Value *Val) const;
|
|
Value *getMask(Value *Val) const;
|
|
Value *getPassThrough(Value *Val) const;
|
|
|
|
Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
|
|
int Adjust) const;
|
|
Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
|
|
int Alignment) const;
|
|
Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
|
|
int Alignment, Value *Mask, Value *PassThru) const;
|
|
Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
|
|
int Alignment, Value *Mask) const;
|
|
|
|
DepList getUpwardDeps(Instruction *In, Instruction *Base) const;
|
|
bool createAddressGroups();
|
|
MoveList createLoadGroups(const AddrList &Group) const;
|
|
MoveList createStoreGroups(const AddrList &Group) const;
|
|
bool move(const MoveGroup &Move) const;
|
|
void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
|
|
int ScLen, Value *AlignVal, Value *AlignAddr) const;
|
|
void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
|
|
int ScLen, Value *AlignVal, Value *AlignAddr) const;
|
|
bool realignGroup(const MoveGroup &Move) const;
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
|
|
friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
|
|
friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B);
|
|
friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
|
|
|
|
std::map<Instruction *, AddrList> AddrGroups;
|
|
const HexagonVectorCombine &HVC;
|
|
};
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
|
|
OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n';
|
|
OS << "Addr: " << *AI.Addr << '\n';
|
|
OS << "Type: " << *AI.ValTy << '\n';
|
|
OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
|
|
OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
|
|
OS << "Offset: " << AI.Offset;
|
|
return OS;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
|
|
OS << "Main\n";
|
|
for (Instruction *I : MG.Main)
|
|
OS << " " << *I << '\n';
|
|
OS << "Deps\n";
|
|
for (Instruction *I : MG.Deps)
|
|
OS << " " << *I << '\n';
|
|
return OS;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
raw_ostream &operator<<(raw_ostream &OS,
|
|
const AlignVectors::ByteSpan::Block &B) {
|
|
OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
|
|
<< *B.Seg.Val;
|
|
return OS;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
|
|
OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
|
|
for (const AlignVectors::ByteSpan::Block &B : BS)
|
|
OS << B << '\n';
|
|
OS << ']';
|
|
return OS;
|
|
}
|
|
|
|
class HvxIdioms {
|
|
public:
|
|
HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) {
|
|
auto *Int32Ty = HVC.getIntTy(32);
|
|
HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false);
|
|
HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true);
|
|
}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
enum Signedness { Positive, Signed, Unsigned };
|
|
|
|
// Value + sign
|
|
// This is to keep track of whether the value should be treated as signed
|
|
// or unsigned, or is known to be positive.
|
|
struct SValue {
|
|
Value *Val;
|
|
Signedness Sgn;
|
|
};
|
|
|
|
struct FxpOp {
|
|
unsigned Opcode;
|
|
unsigned Frac; // Number of fraction bits
|
|
SValue X, Y;
|
|
// If present, add 1 << RoundAt before shift:
|
|
std::optional<unsigned> RoundAt;
|
|
};
|
|
|
|
auto getNumSignificantBits(Value *V, Instruction *In) const
|
|
-> std::pair<unsigned, Signedness>;
|
|
auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>;
|
|
|
|
auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>;
|
|
auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *;
|
|
|
|
auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
|
|
const FxpOp &Op) const -> Value *;
|
|
auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
|
|
bool Rounding) const -> Value *;
|
|
auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
|
|
bool Rounding) const -> Value *;
|
|
// Return {Result, Carry}, where Carry is a vector predicate.
|
|
auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
|
|
Value *CarryIn = nullptr) const
|
|
-> std::pair<Value *, Value *>;
|
|
auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *;
|
|
auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
|
|
-> std::pair<Value *, Value *>;
|
|
auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
|
|
ArrayRef<Value *> WordY) const -> SmallVector<Value *>;
|
|
auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
|
|
Signedness SgnX, ArrayRef<Value *> WordY,
|
|
Signedness SgnY) const -> SmallVector<Value *>;
|
|
|
|
VectorType *HvxI32Ty;
|
|
VectorType *HvxP32Ty;
|
|
const HexagonVectorCombine &HVC;
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &, const FxpOp &);
|
|
};
|
|
|
|
[[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS,
|
|
const HvxIdioms::FxpOp &Op) {
|
|
static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"};
|
|
OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac;
|
|
if (Op.RoundAt.has_value()) {
|
|
if (Op.Frac != 0 && Op.RoundAt.value() == Op.Frac - 1) {
|
|
OS << ":rnd";
|
|
} else {
|
|
OS << " + 1<<" << Op.RoundAt.value();
|
|
}
|
|
}
|
|
OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n"
|
|
<< " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val;
|
|
return OS;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace {
|
|
|
|
template <typename T> T *getIfUnordered(T *MaybeT) {
|
|
return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
|
|
}
|
|
template <typename T> T *isCandidate(Instruction *In) {
|
|
return dyn_cast<T>(In);
|
|
}
|
|
template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
|
|
return getIfUnordered(dyn_cast<LoadInst>(In));
|
|
}
|
|
template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
|
|
return getIfUnordered(dyn_cast<StoreInst>(In));
|
|
}
|
|
|
|
#if !defined(_MSC_VER) || _MSC_VER >= 1926
|
|
// VS2017 and some versions of VS2019 have trouble compiling this:
|
|
// error C2976: 'std::map': too few template arguments
|
|
// VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
|
|
template <typename Pred, typename... Ts>
|
|
void erase_if(std::map<Ts...> &map, Pred p)
|
|
#else
|
|
template <typename Pred, typename T, typename U>
|
|
void erase_if(std::map<T, U> &map, Pred p)
|
|
#endif
|
|
{
|
|
for (auto i = map.begin(), e = map.end(); i != e;) {
|
|
if (p(*i))
|
|
i = map.erase(i);
|
|
else
|
|
i = std::next(i);
|
|
}
|
|
}
|
|
|
|
// Forward other erase_ifs to the LLVM implementations.
|
|
template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
|
|
llvm::erase_if(std::forward<T>(container), p);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// --- Begin AlignVectors
|
|
|
|
auto AlignVectors::ByteSpan::extent() const -> int {
|
|
if (size() == 0)
|
|
return 0;
|
|
int Min = Blocks[0].Pos;
|
|
int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
|
|
for (int i = 1, e = size(); i != e; ++i) {
|
|
Min = std::min(Min, Blocks[i].Pos);
|
|
Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
|
|
}
|
|
return Max - Min;
|
|
}
|
|
|
|
auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
|
|
ByteSpan Section;
|
|
for (const ByteSpan::Block &B : Blocks) {
|
|
int L = std::max(B.Pos, Start); // Left end.
|
|
int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
|
|
if (L < R) {
|
|
// How much to chop off the beginning of the segment:
|
|
int Off = L > B.Pos ? L - B.Pos : 0;
|
|
Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
|
|
}
|
|
}
|
|
return Section;
|
|
}
|
|
|
|
auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
|
|
for (Block &B : Blocks)
|
|
B.Pos += Offset;
|
|
return *this;
|
|
}
|
|
|
|
auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
|
|
SmallVector<Value *, 8> Values(Blocks.size());
|
|
for (int i = 0, e = Blocks.size(); i != e; ++i)
|
|
Values[i] = Blocks[i].Seg.Val;
|
|
return Values;
|
|
}
|
|
|
|
auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
|
|
const auto *C = dyn_cast<ConstantInt>(V);
|
|
assert(C && "Alignment must be a compile-time constant integer");
|
|
return C->getAlignValue();
|
|
}
|
|
|
|
auto AlignVectors::getAddrInfo(Instruction &In) const
|
|
-> std::optional<AddrInfo> {
|
|
if (auto *L = isCandidate<LoadInst>(&In))
|
|
return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
|
|
L->getAlign());
|
|
if (auto *S = isCandidate<StoreInst>(&In))
|
|
return AddrInfo(HVC, S, S->getPointerOperand(),
|
|
S->getValueOperand()->getType(), S->getAlign());
|
|
if (auto *II = isCandidate<IntrinsicInst>(&In)) {
|
|
Intrinsic::ID ID = II->getIntrinsicID();
|
|
switch (ID) {
|
|
case Intrinsic::masked_load:
|
|
return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
|
|
getAlignFromValue(II->getArgOperand(1)));
|
|
case Intrinsic::masked_store:
|
|
return AddrInfo(HVC, II, II->getArgOperand(1),
|
|
II->getArgOperand(0)->getType(),
|
|
getAlignFromValue(II->getArgOperand(2)));
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
|
|
return HVC.HST.isTypeForHVX(AI.ValTy);
|
|
}
|
|
|
|
auto AlignVectors::getPayload(Value *Val) const -> Value * {
|
|
if (auto *In = dyn_cast<Instruction>(Val)) {
|
|
Intrinsic::ID ID = 0;
|
|
if (auto *II = dyn_cast<IntrinsicInst>(In))
|
|
ID = II->getIntrinsicID();
|
|
if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
|
|
return In->getOperand(0);
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
auto AlignVectors::getMask(Value *Val) const -> Value * {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::masked_load:
|
|
return II->getArgOperand(2);
|
|
case Intrinsic::masked_store:
|
|
return II->getArgOperand(3);
|
|
}
|
|
}
|
|
|
|
Type *ValTy = getPayload(Val)->getType();
|
|
if (auto *VecTy = dyn_cast<VectorType>(ValTy))
|
|
return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy)));
|
|
return HVC.getFullValue(HVC.getBoolTy());
|
|
}
|
|
|
|
auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
|
|
if (II->getIntrinsicID() == Intrinsic::masked_load)
|
|
return II->getArgOperand(3);
|
|
}
|
|
return UndefValue::get(getPayload(Val)->getType());
|
|
}
|
|
|
|
auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr,
|
|
Type *ValTy, int Adjust) const
|
|
-> Value * {
|
|
// The adjustment is in bytes, but if it's a multiple of the type size,
|
|
// we don't need to do pointer casts.
|
|
auto *PtrTy = cast<PointerType>(Ptr->getType());
|
|
if (!PtrTy->isOpaque()) {
|
|
Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
|
|
int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc);
|
|
if (Adjust % ElemSize == 0 && Adjust != 0) {
|
|
Value *Tmp0 =
|
|
Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize));
|
|
return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
|
|
}
|
|
}
|
|
|
|
PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
|
|
Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
|
|
Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
|
|
HVC.getConstInt(Adjust));
|
|
return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
|
|
}
|
|
|
|
auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr,
|
|
Type *ValTy, int Alignment) const
|
|
-> Value * {
|
|
Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
|
|
Value *Mask = HVC.getConstInt(-Alignment);
|
|
Value *And = Builder.CreateAnd(AsInt, Mask);
|
|
return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
|
|
}
|
|
|
|
auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy,
|
|
Value *Ptr, int Alignment, Value *Mask,
|
|
Value *PassThru) const -> Value * {
|
|
assert(!HVC.isUndef(Mask)); // Should this be allowed?
|
|
if (HVC.isZero(Mask))
|
|
return PassThru;
|
|
if (Mask == ConstantInt::getTrue(Mask->getType()))
|
|
return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
|
|
return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru);
|
|
}
|
|
|
|
auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val,
|
|
Value *Ptr, int Alignment,
|
|
Value *Mask) const -> Value * {
|
|
if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
|
|
return UndefValue::get(Val->getType());
|
|
if (Mask == ConstantInt::getTrue(Mask->getType()))
|
|
return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
|
|
return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
|
|
}
|
|
|
|
auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const
|
|
-> DepList {
|
|
BasicBlock *Parent = Base->getParent();
|
|
assert(In->getParent() == Parent &&
|
|
"Base and In should be in the same block");
|
|
assert(Base->comesBefore(In) && "Base should come before In");
|
|
|
|
DepList Deps;
|
|
std::deque<Instruction *> WorkQ = {In};
|
|
while (!WorkQ.empty()) {
|
|
Instruction *D = WorkQ.front();
|
|
WorkQ.pop_front();
|
|
Deps.insert(D);
|
|
for (Value *Op : D->operands()) {
|
|
if (auto *I = dyn_cast<Instruction>(Op)) {
|
|
if (I->getParent() == Parent && Base->comesBefore(I))
|
|
WorkQ.push_back(I);
|
|
}
|
|
}
|
|
}
|
|
return Deps;
|
|
}
|
|
|
|
auto AlignVectors::createAddressGroups() -> bool {
|
|
// An address group created here may contain instructions spanning
|
|
// multiple basic blocks.
|
|
AddrList WorkStack;
|
|
|
|
auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
|
|
for (AddrInfo &W : WorkStack) {
|
|
if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
|
|
return std::make_pair(W.Inst, *D);
|
|
}
|
|
return std::make_pair(nullptr, 0);
|
|
};
|
|
|
|
auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
|
|
BasicBlock &Block = *DomN->getBlock();
|
|
for (Instruction &I : Block) {
|
|
auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
|
|
if (!AI)
|
|
continue;
|
|
auto F = findBaseAndOffset(*AI);
|
|
Instruction *GroupInst;
|
|
if (Instruction *BI = F.first) {
|
|
AI->Offset = F.second;
|
|
GroupInst = BI;
|
|
} else {
|
|
WorkStack.push_back(*AI);
|
|
GroupInst = AI->Inst;
|
|
}
|
|
AddrGroups[GroupInst].push_back(*AI);
|
|
}
|
|
|
|
for (DomTreeNode *C : DomN->children())
|
|
Visit(C, Visit);
|
|
|
|
while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
|
|
WorkStack.pop_back();
|
|
};
|
|
|
|
traverseBlock(HVC.DT.getRootNode(), traverseBlock);
|
|
assert(WorkStack.empty());
|
|
|
|
// AddrGroups are formed.
|
|
|
|
// Remove groups of size 1.
|
|
erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
|
|
// Remove groups that don't use HVX types.
|
|
erase_if(AddrGroups, [&](auto &G) {
|
|
return llvm::none_of(
|
|
G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
|
|
});
|
|
|
|
return !AddrGroups.empty();
|
|
}
|
|
|
|
auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
|
|
// Form load groups.
|
|
// To avoid complications with moving code across basic blocks, only form
|
|
// groups that are contained within a single basic block.
|
|
|
|
auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
|
|
assert(!Move.Main.empty() && "Move group should have non-empty Main");
|
|
// Don't mix HVX and non-HVX instructions.
|
|
if (Move.IsHvx != isHvx(Info))
|
|
return false;
|
|
// Leading instruction in the load group.
|
|
Instruction *Base = Move.Main.front();
|
|
if (Base->getParent() != Info.Inst->getParent())
|
|
return false;
|
|
|
|
auto isSafeToMoveToBase = [&](const Instruction *I) {
|
|
return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
|
|
};
|
|
DepList Deps = getUpwardDeps(Info.Inst, Base);
|
|
if (!llvm::all_of(Deps, isSafeToMoveToBase))
|
|
return false;
|
|
|
|
// The dependencies will be moved together with the load, so make sure
|
|
// that none of them could be moved independently in another group.
|
|
Deps.erase(Info.Inst);
|
|
auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
|
|
if (llvm::any_of(Deps, inAddrMap))
|
|
return false;
|
|
Move.Main.push_back(Info.Inst);
|
|
llvm::append_range(Move.Deps, Deps);
|
|
return true;
|
|
};
|
|
|
|
MoveList LoadGroups;
|
|
|
|
for (const AddrInfo &Info : Group) {
|
|
if (!Info.Inst->mayReadFromMemory())
|
|
continue;
|
|
if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
|
|
LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
|
|
}
|
|
|
|
// Erase singleton groups.
|
|
erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
|
|
return LoadGroups;
|
|
}
|
|
|
|
auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
|
|
// Form store groups.
|
|
// To avoid complications with moving code across basic blocks, only form
|
|
// groups that are contained within a single basic block.
|
|
|
|
auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
|
|
assert(!Move.Main.empty() && "Move group should have non-empty Main");
|
|
// For stores with return values we'd have to collect downward depenencies.
|
|
// There are no such stores that we handle at the moment, so omit that.
|
|
assert(Info.Inst->getType()->isVoidTy() &&
|
|
"Not handling stores with return values");
|
|
// Don't mix HVX and non-HVX instructions.
|
|
if (Move.IsHvx != isHvx(Info))
|
|
return false;
|
|
// For stores we need to be careful whether it's safe to move them.
|
|
// Stores that are otherwise safe to move together may not appear safe
|
|
// to move over one another (i.e. isSafeToMoveBefore may return false).
|
|
Instruction *Base = Move.Main.front();
|
|
if (Base->getParent() != Info.Inst->getParent())
|
|
return false;
|
|
if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
|
|
return false;
|
|
Move.Main.push_back(Info.Inst);
|
|
return true;
|
|
};
|
|
|
|
MoveList StoreGroups;
|
|
|
|
for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
|
|
const AddrInfo &Info = *I;
|
|
if (!Info.Inst->mayWriteToMemory())
|
|
continue;
|
|
if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
|
|
StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
|
|
}
|
|
|
|
// Erase singleton groups.
|
|
erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
|
|
return StoreGroups;
|
|
}
|
|
|
|
auto AlignVectors::move(const MoveGroup &Move) const -> bool {
|
|
assert(!Move.Main.empty() && "Move group should have non-empty Main");
|
|
Instruction *Where = Move.Main.front();
|
|
|
|
if (Move.IsLoad) {
|
|
// Move all deps to before Where, keeping order.
|
|
for (Instruction *D : Move.Deps)
|
|
D->moveBefore(Where);
|
|
// Move all main instructions to after Where, keeping order.
|
|
ArrayRef<Instruction *> Main(Move.Main);
|
|
for (Instruction *M : Main.drop_front(1)) {
|
|
M->moveAfter(Where);
|
|
Where = M;
|
|
}
|
|
} else {
|
|
// NOTE: Deps are empty for "store" groups. If they need to be
|
|
// non-empty, decide on the order.
|
|
assert(Move.Deps.empty());
|
|
// Move all main instructions to before Where, inverting order.
|
|
ArrayRef<Instruction *> Main(Move.Main);
|
|
for (Instruction *M : Main.drop_front(1)) {
|
|
M->moveBefore(Where);
|
|
Where = M;
|
|
}
|
|
}
|
|
|
|
return Move.Main.size() + Move.Deps.size() > 1;
|
|
}
|
|
|
|
auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder,
|
|
const ByteSpan &VSpan, int ScLen,
|
|
Value *AlignVal, Value *AlignAddr) const
|
|
-> void {
|
|
Type *SecTy = HVC.getByteTy(ScLen);
|
|
int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
|
|
bool DoAlign = !HVC.isZero(AlignVal);
|
|
BasicBlock::iterator BasePos = Builder.GetInsertPoint();
|
|
BasicBlock *BaseBlock = Builder.GetInsertBlock();
|
|
|
|
ByteSpan ASpan;
|
|
auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
|
|
auto *Undef = UndefValue::get(SecTy);
|
|
|
|
SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr);
|
|
|
|
// We could create all of the aligned loads, and generate the valigns
|
|
// at the location of the first load, but for large load groups, this
|
|
// could create highly suboptimal code (there have been groups of 140+
|
|
// loads in real code).
|
|
// Instead, place the loads/valigns as close to the users as possible.
|
|
// In any case we need to have a mapping from the blocks of VSpan (the
|
|
// span covered by the pre-existing loads) to ASpan (the span covered
|
|
// by the aligned loads). There is a small problem, though: ASpan needs
|
|
// to have pointers to the loads/valigns, but we don't know where to put
|
|
// them yet. We can't use nullptr, because when we create sections of
|
|
// ASpan (corresponding to blocks from VSpan), for each block in the
|
|
// section we need to know which blocks of ASpan they are a part of.
|
|
// To have 1-1 mapping between blocks of ASpan and the temporary value
|
|
// pointers, use the addresses of the blocks themselves.
|
|
|
|
// Populate the blocks first, to avoid reallocations of the vector
|
|
// interfering with generating the placeholder addresses.
|
|
for (int Index = 0; Index != NumSectors; ++Index)
|
|
ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen);
|
|
for (int Index = 0; Index != NumSectors; ++Index) {
|
|
ASpan.Blocks[Index].Seg.Val =
|
|
reinterpret_cast<Value *>(&ASpan.Blocks[Index]);
|
|
}
|
|
|
|
// Multiple values from VSpan can map to the same value in ASpan. Since we
|
|
// try to create loads lazily, we need to find the earliest use for each
|
|
// value from ASpan.
|
|
DenseMap<void *, Instruction *> EarliestUser;
|
|
auto isEarlier = [](Instruction *A, Instruction *B) {
|
|
if (B == nullptr)
|
|
return true;
|
|
if (A == nullptr)
|
|
return false;
|
|
assert(A->getParent() == B->getParent());
|
|
return A->comesBefore(B);
|
|
};
|
|
auto earliestUser = [&](const auto &Uses) {
|
|
Instruction *User = nullptr;
|
|
for (const Use &U : Uses) {
|
|
auto *I = dyn_cast<Instruction>(U.getUser());
|
|
assert(I != nullptr && "Load used in a non-instruction?");
|
|
// Make sure we only consider at users in this block, but we need
|
|
// to remember if there were users outside the block too. This is
|
|
// because if there are no users, aligned loads will not be created.
|
|
if (I->getParent() == BaseBlock) {
|
|
if (!isa<PHINode>(I))
|
|
User = std::min(User, I, isEarlier);
|
|
} else {
|
|
User = std::min(User, BaseBlock->getTerminator(), isEarlier);
|
|
}
|
|
}
|
|
return User;
|
|
};
|
|
|
|
for (const ByteSpan::Block &B : VSpan) {
|
|
ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size);
|
|
for (const ByteSpan::Block &S : ASection) {
|
|
EarliestUser[S.Seg.Val] = std::min(
|
|
EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier);
|
|
}
|
|
}
|
|
|
|
auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan,
|
|
int Index) {
|
|
Value *Ptr =
|
|
createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
|
|
// FIXME: generate a predicated load?
|
|
Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
|
|
// If vector shifting is potentially needed, accumulate metadata
|
|
// from source sections of twice the load width.
|
|
int Start = (Index - DoAlign) * ScLen;
|
|
int Width = (1 + DoAlign) * ScLen;
|
|
propagateMetadata(cast<Instruction>(Load),
|
|
VSpan.section(Start, Width).values());
|
|
return cast<Instruction>(Load);
|
|
};
|
|
|
|
auto moveBefore = [this](Instruction *In, Instruction *To) {
|
|
// Move In and its upward dependencies to before To.
|
|
assert(In->getParent() == To->getParent());
|
|
DepList Deps = getUpwardDeps(In, To);
|
|
// DepList is sorted with respect to positions in the basic block.
|
|
for (Instruction *I : Deps)
|
|
I->moveBefore(To);
|
|
};
|
|
|
|
// Generate necessary loads at appropriate locations.
|
|
for (int Index = 0; Index != NumSectors + 1; ++Index) {
|
|
// In ASpan, each block will be either a single aligned load, or a
|
|
// valign of a pair of loads. In the latter case, an aligned load j
|
|
// will belong to the current valign, and the one in the previous
|
|
// block (for j > 0).
|
|
Instruction *PrevAt =
|
|
DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr;
|
|
Instruction *ThisAt =
|
|
Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr;
|
|
if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) {
|
|
Builder.SetInsertPoint(Where);
|
|
Loads[Index] = createLoad(Builder, VSpan, Index);
|
|
// We know it's safe to put the load at BasePos, so if it's not safe
|
|
// to move it from this location to BasePos, then the current location
|
|
// is not valid.
|
|
// We can't do this check proactively because we need the load to exist
|
|
// in order to check legality.
|
|
if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos))
|
|
moveBefore(Loads[Index], &*BasePos);
|
|
}
|
|
}
|
|
// Generate valigns if needed, and fill in proper values in ASpan
|
|
for (int Index = 0; Index != NumSectors; ++Index) {
|
|
ASpan[Index].Seg.Val = nullptr;
|
|
if (auto *Where = EarliestUser[&ASpan[Index]]) {
|
|
Builder.SetInsertPoint(Where);
|
|
Value *Val = Loads[Index];
|
|
assert(Val != nullptr);
|
|
if (DoAlign) {
|
|
Value *NextLoad = Loads[Index + 1];
|
|
assert(NextLoad != nullptr);
|
|
Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal);
|
|
}
|
|
ASpan[Index].Seg.Val = Val;
|
|
}
|
|
}
|
|
|
|
for (const ByteSpan::Block &B : VSpan) {
|
|
ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
|
|
Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
|
|
Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val));
|
|
|
|
for (ByteSpan::Block &S : ASection) {
|
|
if (S.Seg.Val == nullptr)
|
|
continue;
|
|
// The processing of the data loaded by the aligned loads
|
|
// needs to be inserted after the data is available.
|
|
Instruction *SegI = cast<Instruction>(S.Seg.Val);
|
|
Builder.SetInsertPoint(&*std::next(SegI->getIterator()));
|
|
Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
|
|
Accum = HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
|
|
}
|
|
// Instead of casting everything to bytes for the vselect, cast to the
|
|
// original value type. This will avoid complications with casting masks.
|
|
// For example, in cases when the original mask applied to i32, it could
|
|
// be converted to a mask applicable to i8 via pred_typecast intrinsic,
|
|
// but if the mask is not exactly of HVX length, extra handling would be
|
|
// needed to make it work.
|
|
Type *ValTy = getPayload(B.Seg.Val)->getType();
|
|
Value *Cast = Builder.CreateBitCast(Accum, ValTy);
|
|
Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
|
|
getPassThrough(B.Seg.Val));
|
|
B.Seg.Val->replaceAllUsesWith(Sel);
|
|
}
|
|
}
|
|
|
|
auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder,
|
|
const ByteSpan &VSpan, int ScLen,
|
|
Value *AlignVal, Value *AlignAddr) const
|
|
-> void {
|
|
Type *SecTy = HVC.getByteTy(ScLen);
|
|
int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
|
|
bool DoAlign = !HVC.isZero(AlignVal);
|
|
|
|
// Stores.
|
|
ByteSpan ASpanV, ASpanM;
|
|
|
|
// Return a vector value corresponding to the input value Val:
|
|
// either <1 x Val> for scalar Val, or Val itself for vector Val.
|
|
auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * {
|
|
Type *Ty = Val->getType();
|
|
if (Ty->isVectorTy())
|
|
return Val;
|
|
auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false);
|
|
return Builder.CreateBitCast(Val, VecTy);
|
|
};
|
|
|
|
// Create an extra "undef" sector at the beginning and at the end.
|
|
// They will be used as the left/right filler in the vlalign step.
|
|
for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
|
|
// For stores, the size of each section is an aligned vector length.
|
|
// Adjust the store offsets relative to the section start offset.
|
|
ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
|
|
Value *AccumV = UndefValue::get(SecTy);
|
|
Value *AccumM = HVC.getNullValue(SecTy);
|
|
for (ByteSpan::Block &S : VSection) {
|
|
Value *Pay = getPayload(S.Seg.Val);
|
|
Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
|
|
Pay->getType(), HVC.getByteTy());
|
|
AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
|
|
S.Seg.Start, S.Seg.Size, S.Pos);
|
|
AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
|
|
S.Seg.Start, S.Seg.Size, S.Pos);
|
|
}
|
|
ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
|
|
ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
|
|
}
|
|
|
|
// vlalign
|
|
if (DoAlign) {
|
|
for (int j = 1; j != NumSectors + 2; ++j) {
|
|
Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val;
|
|
Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val;
|
|
assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType()));
|
|
ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal);
|
|
ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i != NumSectors + DoAlign; ++i) {
|
|
Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
|
|
Value *Val = ASpanV[i].Seg.Val;
|
|
Value *Mask = ASpanM[i].Seg.Val; // bytes
|
|
if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
|
|
Value *Store =
|
|
createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask));
|
|
// If vector shifting is potentially needed, accumulate metadata
|
|
// from source sections of twice the store width.
|
|
int Start = (i - DoAlign) * ScLen;
|
|
int Width = (1 + DoAlign) * ScLen;
|
|
propagateMetadata(cast<Instruction>(Store),
|
|
VSpan.section(Start, Width).values());
|
|
}
|
|
}
|
|
}
|
|
|
|
auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
|
|
// TODO: Needs support for masked loads/stores of "scalar" vectors.
|
|
if (!Move.IsHvx)
|
|
return false;
|
|
|
|
// Return the element with the maximum alignment from Range,
|
|
// where GetValue obtains the value to compare from an element.
|
|
auto getMaxOf = [](auto Range, auto GetValue) {
|
|
return *std::max_element(
|
|
Range.begin(), Range.end(),
|
|
[&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
|
|
};
|
|
|
|
const AddrList &BaseInfos = AddrGroups.at(Move.Base);
|
|
|
|
// Conceptually, there is a vector of N bytes covering the addresses
|
|
// starting from the minimum offset (i.e. Base.Addr+Start). This vector
|
|
// represents a contiguous memory region that spans all accessed memory
|
|
// locations.
|
|
// The correspondence between loaded or stored values will be expressed
|
|
// in terms of this vector. For example, the 0th element of the vector
|
|
// from the Base address info will start at byte Start from the beginning
|
|
// of this conceptual vector.
|
|
//
|
|
// This vector will be loaded/stored starting at the nearest down-aligned
|
|
// address and the amount od the down-alignment will be AlignVal:
|
|
// valign(load_vector(align_down(Base+Start)), AlignVal)
|
|
|
|
std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
|
|
AddrList MoveInfos;
|
|
llvm::copy_if(
|
|
BaseInfos, std::back_inserter(MoveInfos),
|
|
[&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
|
|
|
|
// Maximum alignment present in the whole address group.
|
|
const AddrInfo &WithMaxAlign =
|
|
getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
|
|
Align MaxGiven = WithMaxAlign.HaveAlign;
|
|
|
|
// Minimum alignment present in the move address group.
|
|
const AddrInfo &WithMinOffset =
|
|
getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
|
|
|
|
const AddrInfo &WithMaxNeeded =
|
|
getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
|
|
Align MinNeeded = WithMaxNeeded.NeedAlign;
|
|
|
|
// Set the builder's insertion point right before the load group, or
|
|
// immediately after the store group. (Instructions in a store group are
|
|
// listed in reverse order.)
|
|
Instruction *InsertAt = Move.Main.front();
|
|
if (!Move.IsLoad) {
|
|
// There should be a terminator (which store isn't, but check anyways).
|
|
assert(InsertAt->getIterator() != InsertAt->getParent()->end());
|
|
InsertAt = &*std::next(InsertAt->getIterator());
|
|
}
|
|
|
|
IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(),
|
|
InstSimplifyFolder(HVC.DL));
|
|
Value *AlignAddr = nullptr; // Actual aligned address.
|
|
Value *AlignVal = nullptr; // Right-shift amount (for valign).
|
|
|
|
if (MinNeeded <= MaxGiven) {
|
|
int Start = WithMinOffset.Offset;
|
|
int OffAtMax = WithMaxAlign.Offset;
|
|
// Shift the offset of the maximally aligned instruction (OffAtMax)
|
|
// back by just enough multiples of the required alignment to cover the
|
|
// distance from Start to OffAtMax.
|
|
// Calculate the address adjustment amount based on the address with the
|
|
// maximum alignment. This is to allow a simple gep instruction instead
|
|
// of potential bitcasts to i8*.
|
|
int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
|
|
AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
|
|
WithMaxAlign.ValTy, Adjust);
|
|
int Diff = Start - (OffAtMax + Adjust);
|
|
AlignVal = HVC.getConstInt(Diff);
|
|
assert(Diff >= 0);
|
|
assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
|
|
} else {
|
|
// WithMinOffset is the lowest address in the group,
|
|
// WithMinOffset.Addr = Base+Start.
|
|
// Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
|
|
// mask off unnecessary bits, so it's ok to just the original pointer as
|
|
// the alignment amount.
|
|
// Do an explicit down-alignment of the address to avoid creating an
|
|
// aligned instruction with an address that is not really aligned.
|
|
AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
|
|
WithMinOffset.ValTy, MinNeeded.value());
|
|
AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
|
|
}
|
|
|
|
ByteSpan VSpan;
|
|
for (const AddrInfo &AI : MoveInfos) {
|
|
VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
|
|
AI.Offset - WithMinOffset.Offset);
|
|
}
|
|
|
|
// The aligned loads/stores will use blocks that are either scalars,
|
|
// or HVX vectors. Let "sector" be the unified term for such a block.
|
|
// blend(scalar, vector) -> sector...
|
|
int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
|
|
: std::max<int>(MinNeeded.value(), 4);
|
|
assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
|
|
assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
|
|
|
|
if (Move.IsLoad)
|
|
realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
|
|
else
|
|
realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
|
|
|
|
for (auto *Inst : Move.Main)
|
|
Inst->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
auto AlignVectors::isSectorTy(Type *Ty) const -> bool {
|
|
if (!HVC.isByteVecTy(Ty))
|
|
return false;
|
|
int Size = HVC.getSizeOf(Ty);
|
|
if (HVC.HST.isTypeForHVX(Ty))
|
|
return Size == static_cast<int>(HVC.HST.getVectorLength());
|
|
return Size == 4 || Size == 8;
|
|
}
|
|
|
|
auto AlignVectors::run() -> bool {
|
|
if (!createAddressGroups())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
MoveList LoadGroups, StoreGroups;
|
|
|
|
for (auto &G : AddrGroups) {
|
|
llvm::append_range(LoadGroups, createLoadGroups(G.second));
|
|
llvm::append_range(StoreGroups, createStoreGroups(G.second));
|
|
}
|
|
|
|
for (auto &M : LoadGroups)
|
|
Changed |= move(M);
|
|
for (auto &M : StoreGroups)
|
|
Changed |= move(M);
|
|
|
|
for (auto &M : LoadGroups)
|
|
Changed |= realignGroup(M);
|
|
for (auto &M : StoreGroups)
|
|
Changed |= realignGroup(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// --- End AlignVectors
|
|
|
|
// --- Begin HvxIdioms
|
|
|
|
auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const
|
|
-> std::pair<unsigned, Signedness> {
|
|
unsigned Bits = HVC.getNumSignificantBits(V, In);
|
|
// The significant bits are calculated including the sign bit. This may
|
|
// add an extra bit for zero-extended values, e.g. (zext i32 to i64) may
|
|
// result in 33 significant bits. To avoid extra words, skip the extra
|
|
// sign bit, but keep information that the value is to be treated as
|
|
// unsigned.
|
|
KnownBits Known = HVC.getKnownBits(V, In);
|
|
Signedness Sign = Signed;
|
|
unsigned NumToTest = 0; // Number of bits used in test for unsignedness.
|
|
if (isPowerOf2_32(Bits))
|
|
NumToTest = Bits;
|
|
else if (Bits > 1 && isPowerOf2_32(Bits - 1))
|
|
NumToTest = Bits - 1;
|
|
|
|
if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) {
|
|
Sign = Unsigned;
|
|
Bits = NumToTest;
|
|
}
|
|
|
|
// If the top bit of the nearest power-of-2 is zero, this value is
|
|
// positive. It could be treated as either signed or unsigned.
|
|
if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) {
|
|
if (Known.Zero.ashr(Pow2 - 1).isAllOnes())
|
|
Sign = Positive;
|
|
}
|
|
return {Bits, Sign};
|
|
}
|
|
|
|
auto HvxIdioms::canonSgn(SValue X, SValue Y) const
|
|
-> std::pair<SValue, SValue> {
|
|
// Canonicalize the signedness of X and Y, so that the result is one of:
|
|
// S, S
|
|
// U/P, S
|
|
// U/P, U/P
|
|
if (X.Sgn == Signed && Y.Sgn != Signed)
|
|
std::swap(X, Y);
|
|
return {X, Y};
|
|
}
|
|
|
|
// Match
|
|
// (X * Y) [>> N], or
|
|
// ((X * Y) + (1 << N-1)) >> N
|
|
auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> {
|
|
using namespace PatternMatch;
|
|
auto *Ty = In.getType();
|
|
|
|
if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy())
|
|
return std::nullopt;
|
|
|
|
unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth();
|
|
|
|
FxpOp Op;
|
|
Value *Exp = &In;
|
|
|
|
// Fixed-point multiplication is always shifted right (except when the
|
|
// fraction is 0 bits).
|
|
auto m_Shr = [](auto &&V, auto &&S) {
|
|
return m_CombineOr(m_LShr(V, S), m_AShr(V, S));
|
|
};
|
|
|
|
const APInt *Qn = nullptr;
|
|
if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) {
|
|
Op.Frac = Qn->getZExtValue();
|
|
Exp = T;
|
|
} else {
|
|
Op.Frac = 0;
|
|
}
|
|
|
|
if (Op.Frac > Width)
|
|
return std::nullopt;
|
|
|
|
// Check if there is rounding added.
|
|
const APInt *C = nullptr;
|
|
if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) {
|
|
unsigned CV = C->getZExtValue();
|
|
if (CV != 0 && !isPowerOf2_32(CV))
|
|
return std::nullopt;
|
|
if (CV != 0)
|
|
Op.RoundAt = Log2_32(CV);
|
|
Exp = T;
|
|
}
|
|
|
|
// Check if the rest is a multiplication.
|
|
if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) {
|
|
Op.Opcode = Instruction::Mul;
|
|
// FIXME: The information below is recomputed.
|
|
Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second;
|
|
Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second;
|
|
return Op;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const
|
|
-> Value * {
|
|
assert(Op.X.Val->getType() == Op.Y.Val->getType());
|
|
|
|
auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType());
|
|
if (VecTy == nullptr)
|
|
return nullptr;
|
|
auto *ElemTy = cast<IntegerType>(VecTy->getElementType());
|
|
unsigned ElemWidth = ElemTy->getBitWidth();
|
|
|
|
// TODO: This can be relaxed after legalization is done pre-isel.
|
|
if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0)
|
|
return nullptr;
|
|
|
|
// There are no special intrinsics that should be used for multiplying
|
|
// signed 8-bit values, so just skip them. Normal codegen should handle
|
|
// this just fine.
|
|
if (ElemWidth <= 8)
|
|
return nullptr;
|
|
// Similarly, if this is just a multiplication that can be handled without
|
|
// intervention, then leave it alone.
|
|
if (ElemWidth <= 32 && Op.Frac == 0)
|
|
return nullptr;
|
|
|
|
auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In);
|
|
auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In);
|
|
|
|
// TODO: Add multiplication of vectors by scalar registers (up to 4 bytes).
|
|
|
|
Value *X = Op.X.Val, *Y = Op.Y.Val;
|
|
IRBuilder Builder(In.getParent(), In.getIterator(),
|
|
InstSimplifyFolder(HVC.DL));
|
|
|
|
auto roundUpWidth = [](unsigned Width) -> unsigned {
|
|
if (Width <= 32 && !isPowerOf2_32(Width)) {
|
|
// If the element width is not a power of 2, round it up
|
|
// to the next one. Do this for widths not exceeding 32.
|
|
return PowerOf2Ceil(Width);
|
|
}
|
|
if (Width > 32 && Width % 32 != 0) {
|
|
// For wider elements, round it up to the multiple of 32.
|
|
return alignTo(Width, 32u);
|
|
}
|
|
return Width;
|
|
};
|
|
|
|
BitsX = roundUpWidth(BitsX);
|
|
BitsY = roundUpWidth(BitsY);
|
|
|
|
// For elementwise multiplication vectors must have the same lengths, so
|
|
// resize the elements of both inputs to the same width, the max of the
|
|
// calculated significant bits.
|
|
unsigned Width = std::max(BitsX, BitsY);
|
|
|
|
auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy);
|
|
if (Width < ElemWidth) {
|
|
X = Builder.CreateTrunc(X, ResizeTy);
|
|
Y = Builder.CreateTrunc(Y, ResizeTy);
|
|
} else if (Width > ElemWidth) {
|
|
X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy)
|
|
: Builder.CreateZExt(X, ResizeTy);
|
|
Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy)
|
|
: Builder.CreateZExt(Y, ResizeTy);
|
|
};
|
|
|
|
assert(X->getType() == Y->getType() && X->getType() == ResizeTy);
|
|
|
|
unsigned VecLen = HVC.length(ResizeTy);
|
|
unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u);
|
|
|
|
SmallVector<Value *> Results;
|
|
FxpOp ChopOp = Op;
|
|
|
|
for (unsigned V = 0; V != VecLen / ChopLen; ++V) {
|
|
ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen);
|
|
ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen);
|
|
Results.push_back(processFxpMulChopped(Builder, In, ChopOp));
|
|
if (Results.back() == nullptr)
|
|
break;
|
|
}
|
|
|
|
if (Results.back() == nullptr)
|
|
return nullptr;
|
|
|
|
Value *Cat = HVC.concat(Builder, Results);
|
|
Value *Ext = SignX == Signed || SignY == Signed
|
|
? Builder.CreateSExt(Cat, VecTy)
|
|
: Builder.CreateZExt(Cat, VecTy);
|
|
return Ext;
|
|
}
|
|
|
|
auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
|
|
const FxpOp &Op) const -> Value * {
|
|
assert(Op.X.Val->getType() == Op.Y.Val->getType());
|
|
auto *InpTy = cast<VectorType>(Op.X.Val->getType());
|
|
unsigned Width = InpTy->getScalarSizeInBits();
|
|
bool Rounding = Op.RoundAt.has_value();
|
|
|
|
if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) {
|
|
// The fixed-point intrinsics do signed multiplication.
|
|
if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) {
|
|
Value *QMul = nullptr;
|
|
if (Width == 16) {
|
|
QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding);
|
|
} else if (Width == 32) {
|
|
QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding);
|
|
}
|
|
if (QMul != nullptr)
|
|
return QMul;
|
|
}
|
|
}
|
|
|
|
assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n
|
|
assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k
|
|
|
|
// If Width < 32, then it should really be 16.
|
|
if (Width < 32) {
|
|
if (Width < 16)
|
|
return nullptr;
|
|
// Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we
|
|
// generate a full precision products, which is unnecessary if there is
|
|
// no shift.
|
|
assert(Op.Frac != 0 && "Unshifted mul should have been skipped");
|
|
Value *Prod32 = createMul16(Builder, Op.X, Op.Y);
|
|
if (Rounding) {
|
|
Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt);
|
|
Prod32 = Builder.CreateAdd(Prod32, RoundVal);
|
|
}
|
|
|
|
Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac);
|
|
Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed
|
|
? Builder.CreateAShr(Prod32, ShiftAmt)
|
|
: Builder.CreateLShr(Prod32, ShiftAmt);
|
|
return Builder.CreateTrunc(Shifted, InpTy);
|
|
}
|
|
|
|
// Width >= 32
|
|
|
|
// Break up the arguments Op.X and Op.Y into vectors of smaller widths
|
|
// in preparation of doing the multiplication by 32-bit parts.
|
|
auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32);
|
|
auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32);
|
|
auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn);
|
|
|
|
auto *HvxWordTy = cast<VectorType>(WordP.front()->getType());
|
|
|
|
// Add the optional rounding to the proper word.
|
|
if (Op.RoundAt.has_value()) {
|
|
Value *Zero = HVC.getNullValue(WordX[0]->getType());
|
|
SmallVector<Value *> RoundV(WordP.size(), Zero);
|
|
RoundV[*Op.RoundAt / 32] =
|
|
HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32));
|
|
WordP = createAddLong(Builder, WordP, RoundV);
|
|
}
|
|
|
|
// createRightShiftLong?
|
|
|
|
// Shift all products right by Op.Frac.
|
|
unsigned SkipWords = Op.Frac / 32;
|
|
Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32);
|
|
|
|
for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) {
|
|
int Src = Dst + SkipWords;
|
|
Value *Lo = WordP[Src];
|
|
if (Src + 1 < End) {
|
|
Value *Hi = WordP[Src + 1];
|
|
WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr,
|
|
{Hi, Lo, ShiftAmt});
|
|
} else {
|
|
// The shift of the most significant word.
|
|
WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt);
|
|
}
|
|
}
|
|
if (SkipWords != 0)
|
|
WordP.resize(WordP.size() - SkipWords);
|
|
|
|
return HVC.joinVectorElements(Builder, WordP, InpTy);
|
|
}
|
|
|
|
auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
|
|
bool Rounding) const -> Value * {
|
|
assert(X.Val->getType() == Y.Val->getType());
|
|
assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16));
|
|
assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false)));
|
|
|
|
// There is no non-rounding intrinsic for i16.
|
|
if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned)
|
|
return nullptr;
|
|
|
|
auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs);
|
|
return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(),
|
|
{X.Val, Y.Val});
|
|
}
|
|
|
|
auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
|
|
bool Rounding) const -> Value * {
|
|
Type *InpTy = X.Val->getType();
|
|
assert(InpTy == Y.Val->getType());
|
|
assert(InpTy->getScalarType() == HVC.getIntTy(32));
|
|
assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false)));
|
|
|
|
if (X.Sgn == Unsigned || Y.Sgn == Unsigned)
|
|
return nullptr;
|
|
|
|
auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh);
|
|
auto V6_vmpyo_acc = Rounding
|
|
? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc)
|
|
: HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc);
|
|
Value *V1 =
|
|
HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val});
|
|
return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy,
|
|
{V1, X.Val, Y.Val});
|
|
}
|
|
|
|
auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
|
|
Value *CarryIn) const
|
|
-> std::pair<Value *, Value *> {
|
|
assert(X->getType() == Y->getType());
|
|
auto VecTy = cast<VectorType>(X->getType());
|
|
if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) {
|
|
SmallVector<Value *> Args = {X, Y};
|
|
Intrinsic::ID AddCarry;
|
|
if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) {
|
|
AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo);
|
|
} else {
|
|
AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry);
|
|
if (CarryIn == nullptr)
|
|
CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy)));
|
|
Args.push_back(CarryIn);
|
|
}
|
|
Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry,
|
|
/*RetTy=*/nullptr, Args);
|
|
Value *Result = Builder.CreateExtractValue(Ret, {0});
|
|
Value *CarryOut = Builder.CreateExtractValue(Ret, {1});
|
|
return {Result, CarryOut};
|
|
}
|
|
|
|
// In other cases, do a regular add, and unsigned compare-less-than.
|
|
// The carry-out can originate in two places: adding the carry-in or adding
|
|
// the two input values.
|
|
Value *Result1 = X; // Result1 = X + CarryIn
|
|
if (CarryIn != nullptr) {
|
|
unsigned Width = VecTy->getScalarSizeInBits();
|
|
uint32_t Mask = 1;
|
|
if (Width < 32) {
|
|
for (unsigned i = 0, e = 32 / Width; i != e; ++i)
|
|
Mask = (Mask << Width) | 1;
|
|
}
|
|
auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt);
|
|
Value *ValueIn =
|
|
HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr,
|
|
{CarryIn, HVC.getConstInt(Mask)});
|
|
Result1 = Builder.CreateAdd(X, ValueIn);
|
|
}
|
|
|
|
Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X);
|
|
Value *Result2 = Builder.CreateAdd(Result1, Y);
|
|
Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y);
|
|
return {Result2, Builder.CreateOr(CarryOut1, CarryOut2)};
|
|
}
|
|
|
|
auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const
|
|
-> Value * {
|
|
Intrinsic::ID V6_vmpyh = 0;
|
|
std::tie(X, Y) = canonSgn(X, Y);
|
|
|
|
if (X.Sgn == Signed) {
|
|
V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv);
|
|
} else if (Y.Sgn == Signed) {
|
|
V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus);
|
|
} else {
|
|
V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv);
|
|
}
|
|
|
|
// i16*i16 -> i32 / interleaved
|
|
Value *P =
|
|
HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {X.Val, Y.Val});
|
|
// Deinterleave
|
|
return HVC.vdeal(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P));
|
|
}
|
|
|
|
auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
|
|
-> std::pair<Value *, Value *> {
|
|
assert(X.Val->getType() == Y.Val->getType());
|
|
assert(X.Val->getType() == HvxI32Ty);
|
|
|
|
Intrinsic::ID V6_vmpy_parts;
|
|
std::tie(X, Y) = canonSgn(X, Y);
|
|
|
|
if (X.Sgn == Signed) {
|
|
V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts;
|
|
} else if (Y.Sgn == Signed) {
|
|
V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts;
|
|
} else {
|
|
V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts;
|
|
}
|
|
|
|
Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr,
|
|
{X.Val, Y.Val}, {HvxI32Ty});
|
|
Value *Hi = Builder.CreateExtractValue(Parts, {0});
|
|
Value *Lo = Builder.CreateExtractValue(Parts, {1});
|
|
return {Lo, Hi};
|
|
}
|
|
|
|
auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
|
|
ArrayRef<Value *> WordY) const
|
|
-> SmallVector<Value *> {
|
|
assert(WordX.size() == WordY.size());
|
|
unsigned Idx = 0, Length = WordX.size();
|
|
SmallVector<Value *> Sum(Length);
|
|
|
|
while (Idx != Length) {
|
|
if (HVC.isZero(WordX[Idx]))
|
|
Sum[Idx] = WordY[Idx];
|
|
else if (HVC.isZero(WordY[Idx]))
|
|
Sum[Idx] = WordX[Idx];
|
|
else
|
|
break;
|
|
++Idx;
|
|
}
|
|
|
|
Value *Carry = nullptr;
|
|
for (; Idx != Length; ++Idx) {
|
|
std::tie(Sum[Idx], Carry) =
|
|
createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry);
|
|
}
|
|
|
|
// This drops the final carry beyond the highest word.
|
|
return Sum;
|
|
}
|
|
|
|
auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
|
|
Signedness SgnX, ArrayRef<Value *> WordY,
|
|
Signedness SgnY) const -> SmallVector<Value *> {
|
|
SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size());
|
|
|
|
// WordX[i] * WordY[j] produces words i+j and i+j+1 of the results,
|
|
// that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3.
|
|
for (int i = 0, e = WordX.size(); i != e; ++i) {
|
|
for (int j = 0, f = WordY.size(); j != f; ++j) {
|
|
// Check the 4 halves that this multiplication can generate.
|
|
Signedness SX = (i + 1 == e) ? SgnX : Unsigned;
|
|
Signedness SY = (j + 1 == f) ? SgnY : Unsigned;
|
|
auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY});
|
|
Products[i + j + 0].push_back(Lo);
|
|
Products[i + j + 1].push_back(Hi);
|
|
}
|
|
}
|
|
|
|
Value *Zero = HVC.getNullValue(WordX[0]->getType());
|
|
|
|
auto pop_back_or_zero = [Zero](auto &Vector) -> Value * {
|
|
if (Vector.empty())
|
|
return Zero;
|
|
auto Last = Vector.back();
|
|
Vector.pop_back();
|
|
return Last;
|
|
};
|
|
|
|
for (int i = 0, e = Products.size(); i != e; ++i) {
|
|
while (Products[i].size() > 1) {
|
|
Value *Carry = nullptr; // no carry-in
|
|
for (int j = i; j != e; ++j) {
|
|
auto &ProdJ = Products[j];
|
|
auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ),
|
|
pop_back_or_zero(ProdJ), Carry);
|
|
ProdJ.insert(ProdJ.begin(), Sum);
|
|
Carry = CarryOut;
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVector<Value *> WordP;
|
|
for (auto &P : Products) {
|
|
assert(P.size() == 1 && "Should have been added together");
|
|
WordP.push_back(P.front());
|
|
}
|
|
|
|
return WordP;
|
|
}
|
|
|
|
auto HvxIdioms::run() -> bool {
|
|
bool Changed = false;
|
|
|
|
for (BasicBlock &B : HVC.F) {
|
|
for (auto It = B.rbegin(); It != B.rend(); ++It) {
|
|
if (auto Fxm = matchFxpMul(*It)) {
|
|
Value *New = processFxpMul(*It, *Fxm);
|
|
// Always report "changed" for now.
|
|
Changed = true;
|
|
if (!New)
|
|
continue;
|
|
bool StartOver = !isa<Instruction>(New);
|
|
It->replaceAllUsesWith(New);
|
|
RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI);
|
|
It = StartOver ? B.rbegin()
|
|
: cast<Instruction>(New)->getReverseIterator();
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// --- End HvxIdioms
|
|
|
|
auto HexagonVectorCombine::run() -> bool {
|
|
if (!HST.useHVXOps())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
Changed |= AlignVectors(*this).run();
|
|
Changed |= HvxIdioms(*this).run();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * {
|
|
return IntegerType::get(F.getContext(), Width);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
|
|
assert(ElemCount >= 0);
|
|
IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
|
|
if (ElemCount == 0)
|
|
return ByteTy;
|
|
return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
|
|
assert(ElemCount >= 0);
|
|
IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
|
|
if (ElemCount == 0)
|
|
return BoolTy;
|
|
return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const
|
|
-> ConstantInt * {
|
|
return ConstantInt::getSigned(getIntTy(Width), Val);
|
|
}
|
|
|
|
auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
|
|
if (auto *C = dyn_cast<Constant>(Val))
|
|
return C->isZeroValue();
|
|
return false;
|
|
}
|
|
|
|
auto HexagonVectorCombine::getIntValue(const Value *Val) const
|
|
-> std::optional<APInt> {
|
|
if (auto *CI = dyn_cast<ConstantInt>(Val))
|
|
return CI->getValue();
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
|
|
return isa<UndefValue>(Val);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const
|
|
-> VectorType * {
|
|
EVT ETy = EVT::getEVT(ElemTy, false);
|
|
assert(ETy.isSimple() && "Invalid HVX element type");
|
|
// Do not allow boolean types here: they don't have a fixed length.
|
|
assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) &&
|
|
"Invalid HVX element type");
|
|
unsigned HwLen = HST.getVectorLength();
|
|
unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits();
|
|
return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems,
|
|
/*Scalable=*/false);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const
|
|
-> int {
|
|
return getSizeOf(Val->getType(), Kind);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const
|
|
-> int {
|
|
auto *NcTy = const_cast<Type *>(Ty);
|
|
switch (Kind) {
|
|
case Store:
|
|
return DL.getTypeStoreSize(NcTy).getFixedValue();
|
|
case Alloc:
|
|
return DL.getTypeAllocSize(NcTy).getFixedValue();
|
|
}
|
|
llvm_unreachable("Unhandled SizeKind enum");
|
|
}
|
|
|
|
auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
|
|
// The actual type may be shorter than the HVX vector, so determine
|
|
// the alignment based on subtarget info.
|
|
if (HST.isTypeForHVX(Ty))
|
|
return HST.getVectorLength();
|
|
return DL.getABITypeAlign(Ty).value();
|
|
}
|
|
|
|
auto HexagonVectorCombine::length(Value *Val) const -> size_t {
|
|
return length(Val->getType());
|
|
}
|
|
|
|
auto HexagonVectorCombine::length(Type *Ty) const -> size_t {
|
|
auto *VecTy = dyn_cast<VectorType>(Ty);
|
|
assert(VecTy && "Must be a vector type");
|
|
return VecTy->getElementCount().getFixedValue();
|
|
}
|
|
|
|
auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
|
|
assert(Ty->isIntOrIntVectorTy());
|
|
auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
|
|
if (auto *VecTy = dyn_cast<VectorType>(Ty))
|
|
return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
|
|
return Zero;
|
|
}
|
|
|
|
auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
|
|
assert(Ty->isIntOrIntVectorTy());
|
|
auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
|
|
if (auto *VecTy = dyn_cast<VectorType>(Ty))
|
|
return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
|
|
return Minus1;
|
|
}
|
|
|
|
auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const
|
|
-> Constant * {
|
|
assert(Ty->isVectorTy());
|
|
auto VecTy = cast<VectorType>(Ty);
|
|
Type *ElemTy = VecTy->getElementType();
|
|
// Add support for floats if needed.
|
|
auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(),
|
|
ConstantInt::get(ElemTy, Val));
|
|
return Splat;
|
|
}
|
|
|
|
auto HexagonVectorCombine::simplify(Value *V) const -> Value * {
|
|
if (auto *In = dyn_cast<Instruction>(V)) {
|
|
SimplifyQuery Q(DL, &TLI, &DT, &AC, In);
|
|
return simplifyInstruction(In, Q);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
|
|
auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst,
|
|
Value *Src, int Start, int Length,
|
|
int Where) const -> Value * {
|
|
assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
|
|
int SrcLen = getSizeOf(Src);
|
|
int DstLen = getSizeOf(Dst);
|
|
assert(0 <= Start && Start + Length <= SrcLen);
|
|
assert(0 <= Where && Where + Length <= DstLen);
|
|
|
|
int P2Len = PowerOf2Ceil(SrcLen | DstLen);
|
|
auto *Undef = UndefValue::get(getByteTy());
|
|
Value *P2Src = vresize(Builder, Src, P2Len, Undef);
|
|
Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
|
|
|
|
SmallVector<int, 256> SMask(P2Len);
|
|
for (int i = 0; i != P2Len; ++i) {
|
|
// If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
|
|
// Otherwise, pick Dst[i];
|
|
SMask[i] =
|
|
(Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
|
|
}
|
|
|
|
Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
|
|
return vresize(Builder, P2Insert, DstLen, Undef);
|
|
}
|
|
|
|
auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo,
|
|
Value *Hi, Value *Amt) const -> Value * {
|
|
assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
|
|
if (isZero(Amt))
|
|
return Hi;
|
|
int VecLen = getSizeOf(Hi);
|
|
if (auto IntAmt = getIntValue(Amt))
|
|
return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
|
|
VecLen);
|
|
|
|
if (HST.isTypeForHVX(Hi->getType())) {
|
|
assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
|
|
"Expecting an exact HVX type");
|
|
return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb),
|
|
Hi->getType(), {Hi, Lo, Amt});
|
|
}
|
|
|
|
if (VecLen == 4) {
|
|
Value *Pair = concat(Builder, {Lo, Hi});
|
|
Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
|
|
Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
|
|
return Builder.CreateBitCast(Trunc, Hi->getType());
|
|
}
|
|
if (VecLen == 8) {
|
|
Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
|
|
return vralignb(Builder, Lo, Hi, Sub);
|
|
}
|
|
llvm_unreachable("Unexpected vector length");
|
|
}
|
|
|
|
auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo,
|
|
Value *Hi, Value *Amt) const -> Value * {
|
|
assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
|
|
if (isZero(Amt))
|
|
return Lo;
|
|
int VecLen = getSizeOf(Lo);
|
|
if (auto IntAmt = getIntValue(Amt))
|
|
return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
|
|
|
|
if (HST.isTypeForHVX(Lo->getType())) {
|
|
assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
|
|
"Expecting an exact HVX type");
|
|
return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb),
|
|
Lo->getType(), {Hi, Lo, Amt});
|
|
}
|
|
|
|
if (VecLen == 4) {
|
|
Value *Pair = concat(Builder, {Lo, Hi});
|
|
Value *Shift = Builder.CreateLShr(Pair, Amt);
|
|
Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
|
|
return Builder.CreateBitCast(Trunc, Lo->getType());
|
|
}
|
|
if (VecLen == 8) {
|
|
Type *Int64Ty = Type::getInt64Ty(F.getContext());
|
|
Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
|
|
Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
|
|
Function *FI = Intrinsic::getDeclaration(F.getParent(),
|
|
Intrinsic::hexagon_S2_valignrb);
|
|
Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
|
|
return Builder.CreateBitCast(Call, Lo->getType());
|
|
}
|
|
llvm_unreachable("Unexpected vector length");
|
|
}
|
|
|
|
// Concatenates a sequence of vectors of the same type.
|
|
auto HexagonVectorCombine::concat(IRBuilderBase &Builder,
|
|
ArrayRef<Value *> Vecs) const -> Value * {
|
|
assert(!Vecs.empty());
|
|
SmallVector<int, 256> SMask;
|
|
std::vector<Value *> Work[2];
|
|
int ThisW = 0, OtherW = 1;
|
|
|
|
Work[ThisW].assign(Vecs.begin(), Vecs.end());
|
|
while (Work[ThisW].size() > 1) {
|
|
auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
|
|
SMask.resize(length(Ty) * 2);
|
|
std::iota(SMask.begin(), SMask.end(), 0);
|
|
|
|
Work[OtherW].clear();
|
|
if (Work[ThisW].size() % 2 != 0)
|
|
Work[ThisW].push_back(UndefValue::get(Ty));
|
|
for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
|
|
Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
|
|
Work[ThisW][i + 1], SMask);
|
|
Work[OtherW].push_back(Joined);
|
|
}
|
|
std::swap(ThisW, OtherW);
|
|
}
|
|
|
|
// Since there may have been some undefs appended to make shuffle operands
|
|
// have the same type, perform the last shuffle to only pick the original
|
|
// elements.
|
|
SMask.resize(Vecs.size() * length(Vecs.front()->getType()));
|
|
std::iota(SMask.begin(), SMask.end(), 0);
|
|
Value *Total = Work[ThisW].front();
|
|
return Builder.CreateShuffleVector(Total, SMask);
|
|
}
|
|
|
|
auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val,
|
|
int NewSize, Value *Pad) const -> Value * {
|
|
assert(isa<VectorType>(Val->getType()));
|
|
auto *ValTy = cast<VectorType>(Val->getType());
|
|
assert(ValTy->getElementType() == Pad->getType());
|
|
|
|
int CurSize = length(ValTy);
|
|
if (CurSize == NewSize)
|
|
return Val;
|
|
// Truncate?
|
|
if (CurSize > NewSize)
|
|
return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize);
|
|
// Extend.
|
|
SmallVector<int, 128> SMask(NewSize);
|
|
std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
|
|
std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
|
|
Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
|
|
return Builder.CreateShuffleVector(Val, PadVec, SMask);
|
|
}
|
|
|
|
auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask,
|
|
Type *FromTy, Type *ToTy) const -> Value * {
|
|
// Mask is a vector <N x i1>, where each element corresponds to an
|
|
// element of FromTy. Remap it so that each element will correspond
|
|
// to an element of ToTy.
|
|
assert(isa<VectorType>(Mask->getType()));
|
|
|
|
Type *FromSTy = FromTy->getScalarType();
|
|
Type *ToSTy = ToTy->getScalarType();
|
|
if (FromSTy == ToSTy)
|
|
return Mask;
|
|
|
|
int FromSize = getSizeOf(FromSTy);
|
|
int ToSize = getSizeOf(ToSTy);
|
|
assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
|
|
|
|
auto *MaskTy = cast<VectorType>(Mask->getType());
|
|
int FromCount = length(MaskTy);
|
|
int ToCount = (FromCount * FromSize) / ToSize;
|
|
assert((FromCount * FromSize) % ToSize == 0);
|
|
|
|
auto *FromITy = getIntTy(FromSize * 8);
|
|
auto *ToITy = getIntTy(ToSize * 8);
|
|
|
|
// Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
|
|
// -> trunc to <M x i1>.
|
|
Value *Ext = Builder.CreateSExt(
|
|
Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false));
|
|
Value *Cast = Builder.CreateBitCast(
|
|
Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false));
|
|
return Builder.CreateTrunc(
|
|
Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false));
|
|
}
|
|
|
|
// Bitcast to bytes, and return least significant bits.
|
|
auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const
|
|
-> Value * {
|
|
Type *ScalarTy = Val->getType()->getScalarType();
|
|
if (ScalarTy == getBoolTy())
|
|
return Val;
|
|
|
|
Value *Bytes = vbytes(Builder, Val);
|
|
if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
|
|
return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
|
|
// If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
|
|
// <1 x i1>.
|
|
return Builder.CreateTrunc(Bytes, getBoolTy());
|
|
}
|
|
|
|
// Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
|
|
auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const
|
|
-> Value * {
|
|
Type *ScalarTy = Val->getType()->getScalarType();
|
|
if (ScalarTy == getByteTy())
|
|
return Val;
|
|
|
|
if (ScalarTy != getBoolTy())
|
|
return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
|
|
// For bool, return a sext from i1 to i8.
|
|
if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
|
|
return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
|
|
return Builder.CreateSExt(Val, getByteTy());
|
|
}
|
|
|
|
auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val,
|
|
unsigned Start, unsigned Length) const
|
|
-> Value * {
|
|
assert(Start + Length <= length(Val));
|
|
return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length);
|
|
}
|
|
|
|
auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const
|
|
-> Value * {
|
|
size_t Len = length(Val);
|
|
assert(Len % 2 == 0 && "Length should be even");
|
|
return subvector(Builder, Val, 0, Len / 2);
|
|
}
|
|
|
|
auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const
|
|
-> Value * {
|
|
size_t Len = length(Val);
|
|
assert(Len % 2 == 0 && "Length should be even");
|
|
return subvector(Builder, Val, Len / 2, Len / 2);
|
|
}
|
|
|
|
auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0,
|
|
Value *Val1) const -> Value * {
|
|
assert(Val0->getType() == Val1->getType());
|
|
int Len = length(Val0);
|
|
SmallVector<int, 128> Mask(2 * Len);
|
|
|
|
for (int i = 0; i != Len; ++i) {
|
|
Mask[i] = 2 * i; // Even
|
|
Mask[i + Len] = 2 * i + 1; // Odd
|
|
}
|
|
return Builder.CreateShuffleVector(Val0, Val1, Mask);
|
|
}
|
|
|
|
auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0,
|
|
Value *Val1) const -> Value * { //
|
|
assert(Val0->getType() == Val1->getType());
|
|
int Len = length(Val0);
|
|
SmallVector<int, 128> Mask(2 * Len);
|
|
|
|
for (int i = 0; i != Len; ++i) {
|
|
Mask[2 * i + 0] = i; // Val0
|
|
Mask[2 * i + 1] = i + Len; // Val1
|
|
}
|
|
return Builder.CreateShuffleVector(Val0, Val1, Mask);
|
|
}
|
|
|
|
auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder,
|
|
Intrinsic::ID IntID, Type *RetTy,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<Type *> ArgTys) const
|
|
-> Value * {
|
|
auto getCast = [&](IRBuilderBase &Builder, Value *Val,
|
|
Type *DestTy) -> Value * {
|
|
Type *SrcTy = Val->getType();
|
|
if (SrcTy == DestTy)
|
|
return Val;
|
|
|
|
// Non-HVX type. It should be a scalar, and it should already have
|
|
// a valid type.
|
|
assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true));
|
|
|
|
Type *BoolTy = Type::getInt1Ty(F.getContext());
|
|
if (cast<VectorType>(SrcTy)->getElementType() != BoolTy)
|
|
return Builder.CreateBitCast(Val, DestTy);
|
|
|
|
// Predicate HVX vector.
|
|
unsigned HwLen = HST.getVectorLength();
|
|
Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast
|
|
: Intrinsic::hexagon_V6_pred_typecast_128B;
|
|
Function *FI =
|
|
Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()});
|
|
return Builder.CreateCall(FI, {Val});
|
|
};
|
|
|
|
Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys);
|
|
FunctionType *IntrTy = IntrFn->getFunctionType();
|
|
|
|
SmallVector<Value *, 4> IntrArgs;
|
|
for (int i = 0, e = Args.size(); i != e; ++i) {
|
|
Value *A = Args[i];
|
|
Type *T = IntrTy->getParamType(i);
|
|
if (A->getType() != T) {
|
|
IntrArgs.push_back(getCast(Builder, A, T));
|
|
} else {
|
|
IntrArgs.push_back(A);
|
|
}
|
|
}
|
|
Value *Call = Builder.CreateCall(IntrFn, IntrArgs);
|
|
|
|
Type *CallTy = Call->getType();
|
|
if (RetTy == nullptr || CallTy == RetTy)
|
|
return Call;
|
|
// Scalar types should have RetTy matching the call return type.
|
|
assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true));
|
|
return getCast(Builder, Call, RetTy);
|
|
}
|
|
|
|
auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder,
|
|
Value *Vec,
|
|
unsigned ToWidth) const
|
|
-> SmallVector<Value *> {
|
|
// Break a vector of wide elements into a series of vectors with narrow
|
|
// elements:
|
|
// (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...)
|
|
// -->
|
|
// (a0, a1, a2, ...) // lowest "ToWidth" bits
|
|
// (b0, b1, b2, ...) // the next lowest...
|
|
// (c0, c1, c2, ...) // ...
|
|
// ...
|
|
//
|
|
// The number of elements in each resulting vector is the same as
|
|
// in the original vector.
|
|
|
|
auto *VecTy = cast<VectorType>(Vec->getType());
|
|
assert(VecTy->getElementType()->isIntegerTy());
|
|
unsigned FromWidth = VecTy->getScalarSizeInBits();
|
|
assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth));
|
|
assert(ToWidth <= FromWidth && "Breaking up into wider elements?");
|
|
unsigned NumResults = FromWidth / ToWidth;
|
|
|
|
SmallVector<Value *> Results(NumResults);
|
|
Results[0] = Vec;
|
|
unsigned Length = length(VecTy);
|
|
|
|
// Do it by splitting in half, since those operations correspond to deal
|
|
// instructions.
|
|
auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void {
|
|
// Take V = Results[Begin], split it in L, H.
|
|
// Store Results[Begin] = L, Results[(Begin+End)/2] = H
|
|
// Call itself recursively split(Begin, Half), split(Half+1, End)
|
|
if (Begin + 1 == End)
|
|
return;
|
|
|
|
Value *Val = Results[Begin];
|
|
unsigned Width = Val->getType()->getScalarSizeInBits();
|
|
|
|
auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false);
|
|
Value *VVal = Builder.CreateBitCast(Val, VTy);
|
|
|
|
Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal));
|
|
|
|
unsigned Half = (Begin + End) / 2;
|
|
Results[Begin] = sublo(Builder, Res);
|
|
Results[Half] = subhi(Builder, Res);
|
|
|
|
splitFunc(Begin, Half, splitFunc);
|
|
splitFunc(Half, End, splitFunc);
|
|
};
|
|
|
|
splitInHalf(0, NumResults, splitInHalf);
|
|
return Results;
|
|
}
|
|
|
|
auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder,
|
|
ArrayRef<Value *> Values,
|
|
VectorType *ToType) const
|
|
-> Value * {
|
|
assert(ToType->getElementType()->isIntegerTy());
|
|
|
|
// If the list of values does not have power-of-2 elements, append copies
|
|
// of the sign bit to it, to make the size be 2^n.
|
|
// The reason for this is that the values will be joined in pairs, because
|
|
// otherwise the shuffles will result in convoluted code. With pairwise
|
|
// joins, the shuffles will hopefully be folded into a perfect shuffle.
|
|
// The output will need to be sign-extended to a type with element width
|
|
// being a power-of-2 anyways.
|
|
SmallVector<Value *> Inputs(Values.begin(), Values.end());
|
|
|
|
unsigned ToWidth = ToType->getScalarSizeInBits();
|
|
unsigned Width = Inputs.front()->getType()->getScalarSizeInBits();
|
|
assert(Width <= ToWidth);
|
|
assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth));
|
|
unsigned Length = length(Inputs.front()->getType());
|
|
|
|
unsigned NeedInputs = ToWidth / Width;
|
|
if (Inputs.size() != NeedInputs) {
|
|
Value *Last = Inputs.back();
|
|
Value *Sign =
|
|
Builder.CreateAShr(Last, getConstSplat(Last->getType(), Width - 1));
|
|
Inputs.resize(NeedInputs, Sign);
|
|
}
|
|
|
|
while (Inputs.size() > 1) {
|
|
Width *= 2;
|
|
auto *VTy = VectorType::get(getIntTy(Width), Length, false);
|
|
for (int i = 0, e = Inputs.size(); i < e; i += 2) {
|
|
Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]);
|
|
Inputs[i / 2] = Builder.CreateBitCast(Res, VTy);
|
|
}
|
|
Inputs.resize(Inputs.size() / 2);
|
|
}
|
|
|
|
assert(Inputs.front()->getType() == ToType);
|
|
return Inputs.front();
|
|
}
|
|
|
|
auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
|
|
Value *Ptr1) const
|
|
-> std::optional<int> {
|
|
struct Builder : IRBuilder<> {
|
|
Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {}
|
|
~Builder() {
|
|
for (Instruction *I : llvm::reverse(ToErase))
|
|
I->eraseFromParent();
|
|
}
|
|
SmallVector<Instruction *, 8> ToErase;
|
|
};
|
|
|
|
#define CallBuilder(B, F) \
|
|
[&](auto &B_) { \
|
|
Value *V = B_.F; \
|
|
if (auto *I = dyn_cast<Instruction>(V)) \
|
|
B_.ToErase.push_back(I); \
|
|
return V; \
|
|
}(B)
|
|
|
|
auto Simplify = [this](Value *V) {
|
|
if (Value *S = simplify(V))
|
|
return S;
|
|
return V;
|
|
};
|
|
|
|
auto StripBitCast = [](Value *V) {
|
|
while (auto *C = dyn_cast<BitCastInst>(V))
|
|
V = C->getOperand(0);
|
|
return V;
|
|
};
|
|
|
|
Ptr0 = StripBitCast(Ptr0);
|
|
Ptr1 = StripBitCast(Ptr1);
|
|
if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
|
|
return std::nullopt;
|
|
|
|
auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
|
|
auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
|
|
if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
|
|
return std::nullopt;
|
|
|
|
Builder B(Gep0->getParent());
|
|
int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc);
|
|
|
|
// FIXME: for now only check GEPs with a single index.
|
|
if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
|
|
return std::nullopt;
|
|
|
|
Value *Idx0 = Gep0->getOperand(1);
|
|
Value *Idx1 = Gep1->getOperand(1);
|
|
|
|
// First, try to simplify the subtraction directly.
|
|
if (auto *Diff = dyn_cast<ConstantInt>(
|
|
Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
|
|
return Diff->getSExtValue() * Scale;
|
|
|
|
KnownBits Known0 = getKnownBits(Idx0, Gep0);
|
|
KnownBits Known1 = getKnownBits(Idx1, Gep1);
|
|
APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
|
|
if (Unknown.isAllOnes())
|
|
return std::nullopt;
|
|
|
|
Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
|
|
Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
|
|
Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
|
|
Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
|
|
int Diff0 = 0;
|
|
if (auto *C = dyn_cast<ConstantInt>(SubU)) {
|
|
Diff0 = C->getSExtValue();
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
|
|
Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
|
|
Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
|
|
Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
|
|
Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
|
|
int Diff1 = 0;
|
|
if (auto *C = dyn_cast<ConstantInt>(SubK)) {
|
|
Diff1 = C->getSExtValue();
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
|
|
return (Diff0 + Diff1) * Scale;
|
|
|
|
#undef CallBuilder
|
|
}
|
|
|
|
auto HexagonVectorCombine::getNumSignificantBits(const Value *V,
|
|
const Instruction *CtxI) const
|
|
-> unsigned {
|
|
return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
|
|
}
|
|
|
|
auto HexagonVectorCombine::getKnownBits(const Value *V,
|
|
const Instruction *CtxI) const
|
|
-> KnownBits {
|
|
return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr,
|
|
/*UseInstrInfo=*/true);
|
|
}
|
|
|
|
template <typename T>
|
|
auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
|
|
BasicBlock::const_iterator To,
|
|
const T &IgnoreInsts) const
|
|
-> bool {
|
|
auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
|
|
if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::masked_load:
|
|
return MemoryLocation::getForArgument(II, 0, TLI);
|
|
case Intrinsic::masked_store:
|
|
return MemoryLocation::getForArgument(II, 1, TLI);
|
|
}
|
|
}
|
|
return MemoryLocation::getOrNone(&I);
|
|
};
|
|
|
|
// The source and the destination must be in the same basic block.
|
|
const BasicBlock &Block = *In.getParent();
|
|
assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
|
|
// No PHIs.
|
|
if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
|
|
return false;
|
|
|
|
if (!mayHaveNonDefUseDependency(In))
|
|
return true;
|
|
bool MayWrite = In.mayWriteToMemory();
|
|
auto MaybeLoc = getLocOrNone(In);
|
|
|
|
auto From = In.getIterator();
|
|
if (From == To)
|
|
return true;
|
|
bool MoveUp = (To != Block.end() && To->comesBefore(&In));
|
|
auto Range =
|
|
MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
|
|
for (auto It = Range.first; It != Range.second; ++It) {
|
|
const Instruction &I = *It;
|
|
if (llvm::is_contained(IgnoreInsts, &I))
|
|
continue;
|
|
// assume intrinsic can be ignored
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::assume)
|
|
continue;
|
|
}
|
|
// Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
|
|
if (I.mayThrow())
|
|
return false;
|
|
if (auto *CB = dyn_cast<CallBase>(&I)) {
|
|
if (!CB->hasFnAttr(Attribute::WillReturn))
|
|
return false;
|
|
if (!CB->hasFnAttr(Attribute::NoSync))
|
|
return false;
|
|
}
|
|
if (I.mayReadOrWriteMemory()) {
|
|
auto MaybeLocI = getLocOrNone(I);
|
|
if (MayWrite || I.mayWriteToMemory()) {
|
|
if (!MaybeLoc || !MaybeLocI)
|
|
return false;
|
|
if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
|
|
if (auto *VecTy = dyn_cast<VectorType>(Ty))
|
|
return VecTy->getElementType() == getByteTy();
|
|
return false;
|
|
}
|
|
|
|
auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo,
|
|
Value *Hi, int Start,
|
|
int Length) const -> Value * {
|
|
assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi));
|
|
SmallVector<int, 128> SMask(Length);
|
|
std::iota(SMask.begin(), SMask.end(), Start);
|
|
return Builder.CreateShuffleVector(Lo, Hi, SMask);
|
|
}
|
|
|
|
// Pass management.
|
|
|
|
namespace llvm {
|
|
void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
|
|
FunctionPass *createHexagonVectorCombineLegacyPass();
|
|
} // namespace llvm
|
|
|
|
namespace {
|
|
class HexagonVectorCombineLegacy : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
HexagonVectorCombineLegacy() : FunctionPass(ID) {}
|
|
|
|
StringRef getPassName() const override { return "Hexagon Vector Combine"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
AssumptionCache &AC =
|
|
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
|
|
HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
|
|
return HVC.run();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char HexagonVectorCombineLegacy::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
|
|
"Hexagon Vector Combine", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
|
|
"Hexagon Vector Combine", false, false)
|
|
|
|
FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
|
|
return new HexagonVectorCombineLegacy();
|
|
}
|