forked from OSchip/llvm-project
156 lines
6.5 KiB
C++
156 lines
6.5 KiB
C++
//===- SparsificationAndBufferizationPass.cpp - Tensor to Memref Lowering -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::func;
|
|
|
|
namespace mlir {
|
|
namespace sparse_tensor {
|
|
|
|
/// Return `true` if one of the given types is a sparse tensor type.
|
|
static bool containsSparseTensor(TypeRange types) {
|
|
for (Type t : types)
|
|
if (getSparseTensorEncoding(t))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// A pass that lowers tensor ops to memref ops, regardless of whether they are
|
|
/// dense or sparse.
|
|
///
|
|
/// One-Shot Analysis is used to detect RaW conflicts and to insert buffer
|
|
/// copies of the tensor level (`insertTensorCopies`). Afterwards, the lowering
|
|
/// of tensor ops to memref ops follows a different code path depending on
|
|
/// whether the op is sparse or dense:
|
|
///
|
|
/// * Sparse tensor ops are lowered through Sparsification and follow-up pass
|
|
/// that lowers sparse_tensor dialect ops.
|
|
/// * Dense tensor ops are lowered through BufferizableOpInterface
|
|
/// implementations.
|
|
class SparsificationAndBufferizationPass
|
|
: public PassWrapper<SparsificationAndBufferizationPass,
|
|
OperationPass<ModuleOp>> {
|
|
public:
|
|
SparsificationAndBufferizationPass(
|
|
const bufferization::OneShotBufferizationOptions &bufferizationOptions,
|
|
const SparsificationOptions &sparsificationOptions,
|
|
const SparseTensorConversionOptions &sparseTensorConversionOptions,
|
|
bool enableRuntimeLibrary, bool enableBufferInitialization)
|
|
: bufferizationOptions(bufferizationOptions),
|
|
sparsificationOptions(sparsificationOptions),
|
|
sparseTensorConversionOptions(sparseTensorConversionOptions),
|
|
enableRuntimeLibrary(enableRuntimeLibrary),
|
|
enableBufferInitialization(enableBufferInitialization) {}
|
|
|
|
/// Bufferize all dense ops. This assumes that no further analysis is needed
|
|
/// and that all required buffer copies were already inserted by
|
|
/// `insertTensorCopies` in the form of `bufferization.alloc_tensor` ops.
|
|
LogicalResult runDenseBufferization() {
|
|
bufferization::OpFilter denseOpFilter;
|
|
denseOpFilter.allowOperation([&](Operation *op) {
|
|
if (containsSparseTensor(TypeRange(op->getResults())) ||
|
|
containsSparseTensor(TypeRange(op->getOperands())))
|
|
return false;
|
|
if (auto funcOp = dyn_cast<func::FuncOp>(op)) {
|
|
FunctionType funcType = funcOp.getFunctionType();
|
|
if (containsSparseTensor(funcType.getInputs()) ||
|
|
containsSparseTensor(funcType.getResults()))
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
return bufferization::bufferizeOp(getOperation(), bufferizationOptions,
|
|
/*copyBeforeWrite=*/false,
|
|
&denseOpFilter);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
{
|
|
// Run enabling transformations.
|
|
OpPassManager pm("builtin.module");
|
|
pm.addPass(createPreSparsificationRewritePass());
|
|
if (failed(runPipeline(pm, getOperation())))
|
|
return signalPassFailure();
|
|
}
|
|
|
|
// Insert tensor copies. This step runs One-Shot Analysis (which analyzes
|
|
// SSA use-def chains of tensor IR) and decides where buffer copies are
|
|
// needed and where buffers can be written to in-place. These decisions are
|
|
// materialized in the IR in the form of `bufferization.alloc_tensor` ops.
|
|
//
|
|
// Note: All following steps in this pass must be careful not to modify the
|
|
// structure of the IR (i.e., tensor use-def chains), as that could
|
|
// invalidate the results of the analysis. From now on, only small and
|
|
// localized rewrites are allowed, such as replacing a tensor op with its
|
|
// memref equivalent.
|
|
if (failed(bufferization::insertTensorCopies(getOperation(),
|
|
bufferizationOptions)))
|
|
return signalPassFailure();
|
|
|
|
// `testAnalysisOnly` is a debug/testing flag. If set, the results of
|
|
// OneShotAnalysis are added to the IR via attributes. In that case, do not
|
|
// continue with the remaining pipeline.
|
|
if (bufferizationOptions.testAnalysisOnly)
|
|
return;
|
|
|
|
// Bufferize all sparse ops. No further analysis is needed. All required
|
|
// buffer copies were already inserted by `insertTensorCopies` in the form
|
|
// of `bufferization.alloc_tensor` ops.
|
|
{
|
|
OpPassManager pm("builtin.module");
|
|
pm.addPass(createSparsificationPass(sparsificationOptions));
|
|
pm.addPass(createPostSparsificationRewritePass(enableRuntimeLibrary));
|
|
if (enableRuntimeLibrary) {
|
|
pm.addPass(
|
|
createSparseTensorConversionPass(sparseTensorConversionOptions));
|
|
} else {
|
|
pm.addPass(createSparseTensorCodegenPass(enableBufferInitialization));
|
|
pm.addPass(createSparseBufferRewritePass(enableBufferInitialization));
|
|
}
|
|
if (failed(runPipeline(pm, getOperation())))
|
|
return signalPassFailure();
|
|
}
|
|
|
|
// Bufferize all dense ops.
|
|
if (failed(runDenseBufferization()))
|
|
signalPassFailure();
|
|
}
|
|
|
|
private:
|
|
bufferization::OneShotBufferizationOptions bufferizationOptions;
|
|
SparsificationOptions sparsificationOptions;
|
|
SparseTensorConversionOptions sparseTensorConversionOptions;
|
|
bool enableRuntimeLibrary;
|
|
bool enableBufferInitialization;
|
|
};
|
|
} // namespace sparse_tensor
|
|
} // namespace mlir
|
|
|
|
std::unique_ptr<Pass> mlir::createSparsificationAndBufferizationPass(
|
|
const bufferization::OneShotBufferizationOptions &bufferizationOptions,
|
|
const SparsificationOptions &sparsificationOptions,
|
|
const SparseTensorConversionOptions &sparseTensorConversionOptions,
|
|
bool enableRuntimeLibrary, bool enableBufferInitialization) {
|
|
return std::make_unique<
|
|
mlir::sparse_tensor::SparsificationAndBufferizationPass>(
|
|
bufferizationOptions, sparsificationOptions,
|
|
sparseTensorConversionOptions, enableRuntimeLibrary,
|
|
enableBufferInitialization);
|
|
}
|