llvm-project/mlir/lib/Dialect/SparseTensor/Pipelines/SparseTensorPipelines.cpp

94 lines
4.1 KiB
C++

//===- SparseTensorPipelines.cpp - Pipelines for sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SparseTensor/Pipelines/Passes.h"
#include "mlir/Conversion/Passes.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
/// Return configuration options for One-Shot Bufferize.
static bufferization::OneShotBufferizationOptions
getBufferizationOptions(bool analysisOnly) {
using namespace bufferization;
OneShotBufferizationOptions options;
options.bufferizeFunctionBoundaries = true;
// TODO(springerm): To spot memory leaks more easily, returning dense allocs
// should be disallowed.
options.allowReturnAllocs = true;
options.functionBoundaryTypeConversion = LayoutMapOption::IdentityLayoutMap;
options.unknownTypeConverterFn = [](Value value, Attribute memorySpace,
const BufferizationOptions &options) {
return getMemRefTypeWithStaticIdentityLayout(
value.getType().cast<TensorType>(), memorySpace);
};
if (analysisOnly) {
options.testAnalysisOnly = true;
options.printConflicts = true;
}
return options;
}
//===----------------------------------------------------------------------===//
// Pipeline implementation.
//===----------------------------------------------------------------------===//
void mlir::sparse_tensor::buildSparseCompiler(
OpPassManager &pm, const SparseCompilerOptions &options) {
pm.addNestedPass<func::FuncOp>(createLinalgGeneralizationPass());
pm.addPass(createSparsificationAndBufferizationPass(
getBufferizationOptions(options.testBufferizationAnalysisOnly),
options.sparsificationOptions(), options.sparseTensorConversionOptions(),
options.enableRuntimeLibrary, options.enableBufferInitialization));
if (options.testBufferizationAnalysisOnly)
return;
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
pm.addNestedPass<func::FuncOp>(
mlir::bufferization::createFinalizingBufferizePass());
// TODO(springerm): Add sparse support to the BufferDeallocation pass and add
// it to this pipeline.
pm.addNestedPass<func::FuncOp>(createConvertLinalgToLoopsPass());
pm.addNestedPass<func::FuncOp>(createConvertVectorToSCFPass());
pm.addNestedPass<func::FuncOp>(createConvertSCFToCFPass());
pm.addPass(createLowerAffinePass());
pm.addPass(createConvertVectorToLLVMPass(options.lowerVectorToLLVMOptions()));
pm.addPass(createMemRefToLLVMConversionPass());
pm.addNestedPass<func::FuncOp>(createConvertComplexToStandardPass());
pm.addNestedPass<mlir::func::FuncOp>(mlir::arith::createArithExpandOpsPass());
pm.addNestedPass<func::FuncOp>(createConvertMathToLLVMPass());
pm.addPass(createConvertMathToLibmPass());
pm.addPass(createConvertComplexToLibmPass());
pm.addPass(createConvertComplexToLLVMPass());
pm.addPass(createConvertFuncToLLVMPass());
pm.addPass(createReconcileUnrealizedCastsPass());
}
//===----------------------------------------------------------------------===//
// Pipeline registration.
//===----------------------------------------------------------------------===//
void mlir::sparse_tensor::registerSparseTensorPipelines() {
PassPipelineRegistration<SparseCompilerOptions>(
"sparse-compiler",
"The standard pipeline for taking sparsity-agnostic IR using the"
" sparse-tensor type, and lowering it to LLVM IR with concrete"
" representations and algorithms for sparse tensors.",
buildSparseCompiler);
}