llvm-project/polly/lib/Transform/MatmulOptimizer.cpp

1836 lines
77 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- MatmulOptimizer.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "polly/MatmulOptimizer.h"
#include "polly/DependenceInfo.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Simplify.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ctx.h"
#include "isl/schedule_node.h"
#include "isl/schedule_type.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <string>
#include <vector>
#define DEBUG_TYPE "polly-opt-isl"
using namespace llvm;
using namespace polly;
namespace llvm {
class Value;
}
static cl::opt<int> LatencyVectorFma(
"polly-target-latency-vector-fma",
cl::desc("The minimal number of cycles between issuing two "
"dependent consecutive vector fused multiply-add "
"instructions."),
cl::Hidden, cl::init(8), cl::cat(PollyCategory));
static cl::opt<int> ThroughputVectorFma(
"polly-target-throughput-vector-fma",
cl::desc("A throughput of the processor floating-point arithmetic units "
"expressed in the number of vector fused multiply-add "
"instructions per clock cycle."),
cl::Hidden, cl::init(1), cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelSize(
"polly-target-1st-cache-level-size",
cl::desc("The size of the first cache level specified in bytes."),
cl::Hidden, cl::init(-1), cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelDefaultSize(
"polly-target-1st-cache-level-default-size",
cl::desc("The default size of the first cache level specified in bytes"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(32768), cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelSize(
"polly-target-2nd-cache-level-size",
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
cl::init(-1), cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelDefaultSize(
"polly-target-2nd-cache-level-default-size",
cl::desc("The default size of the second cache level specified in bytes"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(262144), cl::cat(PollyCategory));
// This option, along with --polly-target-2nd-cache-level-associativity,
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
// represent the parameters of the target cache, which do not have typical
// values that can be used by default. However, to apply the pattern matching
// optimizations, we use the values of the parameters of Intel Core i7-3820
// SandyBridge in case the parameters are not specified or not provided by the
// TargetTransformInfo.
static cl::opt<int> FirstCacheLevelAssociativity(
"polly-target-1st-cache-level-associativity",
cl::desc("The associativity of the first cache level."), cl::Hidden,
cl::init(-1), cl::cat(PollyCategory));
static cl::opt<int> FirstCacheLevelDefaultAssociativity(
"polly-target-1st-cache-level-default-associativity",
cl::desc("The default associativity of the first cache level"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(8), cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelAssociativity(
"polly-target-2nd-cache-level-associativity",
cl::desc("The associativity of the second cache level."), cl::Hidden,
cl::init(-1), cl::cat(PollyCategory));
static cl::opt<int> SecondCacheLevelDefaultAssociativity(
"polly-target-2nd-cache-level-default-associativity",
cl::desc("The default associativity of the second cache level"
" (if not enough were provided by the TargetTransformInfo)."),
cl::Hidden, cl::init(8), cl::cat(PollyCategory));
static cl::opt<int> VectorRegisterBitwidth(
"polly-target-vector-register-bitwidth",
cl::desc("The size in bits of a vector register (if not set, this "
"information is taken from LLVM's target information."),
cl::Hidden, cl::init(-1), cl::cat(PollyCategory));
static cl::opt<int> PollyPatternMatchingNcQuotient(
"polly-pattern-matching-nc-quotient",
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
"macro-kernel, by Nr, the parameter of the micro-kernel"),
cl::Hidden, cl::init(256), cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedTCOpts("polly-tc-opt",
cl::desc("Perform optimizations of tensor contractions based "
"on pattern matching"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedMMMOpts("polly-matmul-opt",
cl::desc("Perform optimizations of matrix multiplications "
"based on pattern matching"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> OptComputeOut(
"polly-tc-dependences-computeout",
cl::desc("Bound the dependence analysis by a maximal amount of "
"computational steps (0 means no bound)"),
cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));
namespace {
/// Parameters of the micro kernel.
///
/// Parameters, which determine sizes of rank-1 (i.e., outer product) update
/// used in the optimized matrix multiplication.
struct MicroKernelParamsTy {
int Mr;
int Nr;
};
/// Parameters of the macro kernel.
///
/// Parameters, which determine sizes of blocks of partitioned matrices
/// used in the optimized matrix multiplication.
struct MacroKernelParamsTy {
int Mc;
int Nc;
int Kc;
};
/// Parameters of the matrix multiplication operands.
///
/// Parameters, which describe access relations that represent operands of the
/// matrix multiplication.
struct MatMulInfoTy {
MemoryAccess *A = nullptr;
MemoryAccess *B = nullptr;
MemoryAccess *ReadFromC = nullptr;
MemoryAccess *WriteToC = nullptr;
int i = -1;
int j = -1;
int k = -1;
};
/// Parameters of the tensor contraction operands.
///
/// A general d-dimensional tensor T ∈ R ^ Nu0 x ... x Nud1 can be defined
/// as the set of scalar elements indexed by the set of indices u0 ... ud,
///
/// T ≡ {Anu0...nud1 ∈ R | (u0,...,ud1) ∈ Nu0 x ... x Nud1}.
///
/// Let A, B, and C be dA, dB, and dC-dimensional tensors, respectively.
/// Let the free and the contracted indices of the tensor A be grouped into
/// two bundles I = i0...ir1 and P = p0...pt1, respectively. Similarly,
/// the free and the contracted indices of B are grouped into bundles
/// J = j0..js1 and P and the free indices of C are grouped into
/// bundles I and J.
///
/// Tensor contraction (TC) of tensors A, B into tensor C can be represented as
/// C(shuffle(I,J))=∑α·A(shuffle(I,P))·B(shuffle(P,J))+β·C(shuffle(I,J)),
/// where ∑ is a summation over all contracted indices of P,
/// α, β ∈ R, Npi is the length of the tensor dimension that corresponds
/// to the index pi, A(shuffle(I, P)), B(shuffle(P, J)), C(shuffle(I, J)) are
/// accesses to tensors A, B, C, respectively,
/// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of
/// the enclosed indices.
///
/// Multiplication of C(shuffle(I,J)) by β can be moved into a different SCoP
/// statement by loop distribution, which is done by the isl scheduler.
// If β is not equal to one, the optimization of TC of Polly requires
/// such a transformation.
///
/// TCInfoTy contains parameters, which describe access relations that represent
/// operands of the tensor contraction.
struct TCInfoTy {
/// @{
/// Memory accesses that represent reading from tensors, which are operands of
/// the tensor contraction.
MemoryAccess *A = nullptr;
MemoryAccess *B = nullptr;
/// @}
/// @{
/// Memory accesses that represent reading from and writing into the tensor,
/// which contains the result of the tensor contraction.
MemoryAccess *ReadFromC = nullptr;
MemoryAccess *WriteToC = nullptr;
/// @}
/// @{
/// Input dimensions of the schedule space, which represent free
/// indices of tensors.
SmallDenseSet<int> I;
SmallDenseSet<int> J;
/// @}
/// Input dimension of the schedule space, which represents contracted
/// indices of tensors.
SmallDenseSet<int> P;
/// @{
/// Sizes of tensor dimensions for corresponding input dimensions of
/// the schedule space. The size of the tensor dimension can be larger than
/// the size of the corresponding input dimension of the schedule space.
/// This does not correspond to a tensor contraction. However, such a pattern
/// will be optimized by the transformation.
SmallVector<int> DimensionSizes;
SmallVector<int> ADimensions;
SmallVector<int> BDimensions;
SmallVector<int> CDimensions;
/// @}
/// @{
/// Permutations of indices of I, J, and P, which describe operands of
/// the tensor contraction and its result.
SmallVector<int> OrderedI;
SmallVector<int> OrderedJ;
SmallVector<int> OrderedP;
/// @}
};
/// Create an isl::union_set, which describes the option of the form
/// [isolate[] -> unroll[x]].
///
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
isl::space Space = isl::space(Ctx, 0, 0, 1);
isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
UnrollIsolatedSetOption =
UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
return UnrollIsolatedSetOption.wrap();
}
/// Permute the two dimensions of the isl map.
///
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
/// have type @p DimType.
///
/// @param Map The isl map to be modified.
/// @param DimType The type of the dimensions.
/// @param DstPos The first dimension.
/// @param SrcPos The second dimension.
/// @return The modified map.
static isl::map permuteDimensions(isl::map Map, isl::dim DimType,
unsigned DstPos, unsigned SrcPos) {
assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) &&
SrcPos < unsignedFromIslSize(Map.dim(DimType)));
if (DstPos == SrcPos)
return Map;
isl::id DimId;
if (Map.has_tuple_id(DimType))
DimId = Map.get_tuple_id(DimType);
auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
isl::id FreeDimId;
if (Map.has_tuple_id(FreeDim))
FreeDimId = Map.get_tuple_id(FreeDim);
auto MaxDim = std::max(DstPos, SrcPos);
auto MinDim = std::min(DstPos, SrcPos);
Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
if (!DimId.is_null())
Map = Map.set_tuple_id(DimType, DimId);
if (!FreeDimId.is_null())
Map = Map.set_tuple_id(FreeDim, FreeDimId);
return Map;
}
/// Check the form of the access relation.
///
/// Check that the access relation @p AccMap has the form M[i][j], where i
/// is a @p FirstPos and j is a @p SecondPos.
///
/// @param AccMap The access relation to be checked.
/// @param FirstPos The index of the input dimension that is mapped to
/// the first output dimension.
/// @param SecondPos The index of the input dimension that is mapped to the
/// second output dimension.
/// @return True in case @p AccMap has the expected form and false,
/// otherwise.
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
int &SecondPos) {
isl::space Space = AccMap.get_space();
isl::map Universe = isl::map::universe(Space);
if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2)
return false;
// MatMul has the form:
// for (i = 0; i < N; i++)
// for (j = 0; j < M; j++)
// for (k = 0; k < P; k++)
// C[i, j] += A[i, k] * B[k, j]
//
// Permutation of three outer loops: 3! = 6 possibilities.
int FirstDims[] = {0, 0, 1, 1, 2, 2};
int SecondDims[] = {1, 2, 2, 0, 0, 1};
for (int i = 0; i < 6; i += 1) {
auto PossibleMatMul =
Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
.equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
AccMap = AccMap.intersect_domain(Domain);
PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
// If AccMap spans entire domain (Non-partial write),
// compute FirstPos and SecondPos.
// If AccMap != PossibleMatMul here (the two maps have been gisted at
// this point), it means that the writes are not complete, or in other
// words, it is a Partial write and Partial writes must be rejected.
if (AccMap.is_equal(PossibleMatMul)) {
if (FirstPos != -1 && FirstPos != FirstDims[i])
continue;
FirstPos = FirstDims[i];
if (SecondPos != -1 && SecondPos != SecondDims[i])
continue;
SecondPos = SecondDims[i];
return true;
}
}
return false;
}
/// Does the memory access represent a non-scalar operand of the matrix
/// multiplication.
///
/// Check that the memory access @p MemAccess is the read access to a non-scalar
/// operand of the matrix multiplication or its result.
///
/// @param MemAccess The memory access to be checked.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the memory access represents the read access
/// to a non-scalar operand of the matrix multiplication and
/// false, otherwise.
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
MatMulInfoTy &MMI) {
if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
return false;
auto AccMap = MemAccess->getLatestAccessRelation();
isl::set StmtDomain = MemAccess->getStatement()->getDomain();
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
MMI.ReadFromC = MemAccess;
return true;
}
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
MMI.A = MemAccess;
return true;
}
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
MMI.B = MemAccess;
return true;
}
return false;
}
/// Check accesses to operands of the matrix multiplication.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
/// containing the matrix multiplication, in case they do not represent
/// accesses to the non-scalar operands of the matrix multiplication or
/// its result.
///
/// @param PartialSchedule The partial schedule of the SCoP statement.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return True in case the corresponding SCoP statement
/// represents matrix multiplication and false,
/// otherwise.
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
MatMulInfoTy &MMI) {
auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim());
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
auto MapI =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
auto MapJ =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
auto MapK =
permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
auto Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
auto *MemAccessPtr = *MemA;
if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
!(MemAccessPtr->isStrideZero(MapI) &&
MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)))
return false;
}
return true;
}
/// Check for dependencies corresponding to the matrix multiplication.
///
/// Check that there is only true dependence of the form
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
/// to the dependency produced by the matrix multiplication.
///
/// @param Schedule The schedule of the SCoP statement.
/// @param D The SCoP dependencies.
/// @param Pos The parameter to describe an acceptable true dependence.
/// In case it has a negative value, try to determine its
/// acceptable value.
/// @return True in case dependencies correspond to the matrix multiplication
/// and false, otherwise.
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
int &Pos) {
isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
if (!Red.is_null())
Dep = Dep.unite(Red);
auto DomainSpace = Schedule.get_space().domain();
auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
auto Deltas = Dep.extract_map(Space).deltas();
int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set));
for (int i = 0; i < DeltasDimNum; i++) {
auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
Pos = Pos < 0 && Val.is_one() ? i : Pos;
if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
return false;
}
if (DeltasDimNum == 0 || Pos < 0)
return false;
return true;
}
/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. The last memory access modeling an array, MA1, represents writing to
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
/// under consideration.
/// 2. There is only one loop-carried true dependency, and it has the
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
/// loop-carried or anti dependencies.
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
/// and all memory accesses of the SCoP that are different from MA1, MA2,
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
/// of loops i1, i2 and i3.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
/// to check.
/// @D The SCoP dependencies.
/// @MMI Parameters of the matrix multiplication operands.
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
MatMulInfoTy &MMI) {
auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
if (Stmt->size() <= 1)
return false;
auto Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
auto *MemAccessPtr = *MemA;
if (!MemAccessPtr->isLatestArrayKind())
continue;
if (!MemAccessPtr->isWrite())
return false;
auto AccMap = MemAccessPtr->getLatestAccessRelation();
if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
return false;
MMI.WriteToC = MemAccessPtr;
break;
}
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
return false;
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
return false;
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
return false;
return true;
}
/// Permute two dimensions of the band node.
///
/// Permute FirstDim and SecondDim dimensions of the Node.
///
/// @param Node The band node to be modified.
/// @param FirstDim The first dimension to be permuted.
/// @param SecondDim The second dimension to be permuted.
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
unsigned FirstDim,
unsigned SecondDim) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
(unsigned)isl_schedule_node_band_n_member(Node.get()) >
std::max(FirstDim, SecondDim));
auto PartialSchedule =
isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim);
auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim);
PartialSchedule =
PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
PartialSchedule =
PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
Node = isl::manage(isl_schedule_node_delete(Node.release()));
return Node.insert_partial_schedule(PartialSchedule);
}
static isl::schedule_node
createMicroKernel(isl::schedule_node Node,
MicroKernelParamsTy MicroKernelParams) {
Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
1);
Node = Node.parent().parent();
return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
}
/// Create the BLIS macro-kernel.
///
/// We create the BLIS macro-kernel by applying a combination of tiling
/// of dimensions of the band node and interchanging of two innermost
/// modified dimensions. The values of of MacroKernelParams's fields are used
/// as tile sizes.
///
/// @param Node The schedule node to be modified.
/// @param MacroKernelParams Parameters of the macro kernel
/// to be used as tile sizes.
static isl::schedule_node
createMacroKernel(isl::schedule_node Node,
MacroKernelParamsTy MacroKernelParams) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
MacroKernelParams.Kc == 1)
return Node;
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
std::vector<int> TileSizes(DimOutNum, 1);
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
Node = Node.parent().parent();
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
return Node.child(0).child(0);
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bytes, including alignment padding.
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get the size of the widest type of the matrix multiplication operands
/// in bits.
///
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The size of the widest type of the matrix multiplication operands
/// in bits.
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
auto *S = MMI.A->getStatement()->getParent();
auto &DL = S->getFunction().getParent()->getDataLayout();
auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
}
/// Get parameters of the BLIS micro kernel.
///
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
/// such that no stalls caused by the combination of latencies and dependencies
/// are introduced during the updates of the resulting matrix of the matrix
/// multiplication. However, they should also be as small as possible to
/// release more registers for entries of multiplied matrices.
///
/// @param TTI Target Transform Info.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MicroKernelParamsTy.
/// @see MicroKernelParamsTy
static MicroKernelParamsTy getMicroKernelParams(const TargetTransformInfo *TTI,
MatMulInfoTy MMI) {
assert(TTI && "The target transform info should be provided.");
// Nvec - Number of double-precision floating-point numbers that can be hold
// by a vector register. Use 2 by default.
long RegisterBitwidth = VectorRegisterBitwidth;
if (RegisterBitwidth == -1)
RegisterBitwidth =
TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
auto ElementSize = getMatMulTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
auto Nvec = RegisterBitwidth / ElementSize;
if (Nvec == 0)
Nvec = 2;
int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
Nvec) *
Nvec;
int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
return {Mr, Nr};
}
/// Determine parameters of the target cache.
///
/// @param TTI Target Transform Info.
static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
if (FirstCacheLevelSize == -1) {
if (TTI->getCacheSize(L1DCache))
FirstCacheLevelSize = TTI->getCacheSize(L1DCache).value();
else
FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
}
if (SecondCacheLevelSize == -1) {
if (TTI->getCacheSize(L2DCache))
SecondCacheLevelSize = TTI->getCacheSize(L2DCache).value();
else
SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
}
if (FirstCacheLevelAssociativity == -1) {
if (TTI->getCacheAssociativity(L1DCache))
FirstCacheLevelAssociativity =
TTI->getCacheAssociativity(L1DCache).value();
else
FirstCacheLevelAssociativity =
static_cast<int>(FirstCacheLevelDefaultAssociativity);
}
if (SecondCacheLevelAssociativity == -1) {
if (TTI->getCacheAssociativity(L2DCache))
SecondCacheLevelAssociativity =
TTI->getCacheAssociativity(L2DCache).value();
else
SecondCacheLevelAssociativity =
static_cast<int>(SecondCacheLevelDefaultAssociativity);
}
}
/// Get parameters of the BLIS macro kernel.
///
/// During the computation of matrix multiplication, blocks of partitioned
/// matrices are mapped to different layers of the memory hierarchy.
/// To optimize data reuse, blocks should be ideally kept in cache between
/// iterations. Since parameters of the macro kernel determine sizes of these
/// blocks, there are upper and lower bounds on these parameters.
///
/// @param TTI Target Transform Info.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The structure of type MacroKernelParamsTy.
/// @see MacroKernelParamsTy
/// @see MicroKernelParamsTy
static MacroKernelParamsTy
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
const MicroKernelParamsTy &MicroKernelParams,
MatMulInfoTy MMI) {
getTargetCacheParameters(TTI);
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
// it requires information about the first two levels of a cache to determine
// all the parameters of a macro-kernel. It also checks that an associativity
// degree of a cache level is greater than two. Otherwise, another algorithm
// for determination of the parameters should be used.
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
return {1, 1, 1};
// The quotient should be greater than zero.
if (PollyPatternMatchingNcQuotient <= 0)
return {1, 1, 1};
int Car = floor(
(FirstCacheLevelAssociativity - 1) /
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
// Car can be computed to be zero since it is floor to int.
// On Mac OS, division by 0 does not raise a signal. This causes negative
// tile sizes to be computed. Prevent division by Cac==0 by early returning
// if this happens.
if (Car == 0)
return {1, 1, 1};
auto ElementSize = getMatMulAlignTypeSize(MMI);
assert(ElementSize > 0 && "The element size of the matrix multiplication "
"operands should be greater than zero.");
int Kc = (Car * FirstCacheLevelSize) /
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
double Cac =
static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
SecondCacheLevelSize;
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
assert(Mc > 0 && Nc > 0 && Kc > 0 &&
"Matrix block sizes should be greater than zero");
return {Mc, Nc, Kc};
}
/// Create an access relation that is specific to
/// the matrix multiplication pattern.
///
/// Create an access relation of the following form:
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
/// where I is @p FirstDim, J is @p SecondDim.
///
/// It can be used, for example, to create relations that helps to consequently
/// access elements of operands of a matrix multiplication after creation of
/// the BLIS micro and macro kernels.
///
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
///
/// Subsequently, the described access relation is applied to the range of
/// @p MapOldIndVar, that is used to map original induction variables to
/// the ones, which are produced by schedule transformations. It helps to
/// define relations using a new space and, at the same time, keep them
/// in the original one.
///
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param FirstDim, SecondDim The input dimensions that are used to define
/// the specified access relation.
/// @return The specified access relation.
static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
unsigned SecondDim) {
auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3);
auto AccessRel = isl::map::universe(AccessRelSpace);
AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
return MapOldIndVar.apply_range(AccessRel);
}
static isl::schedule_node createExtensionNode(isl::schedule_node Node,
isl::map ExtensionMap) {
auto Extension = isl::union_map(ExtensionMap);
auto NewNode = isl::schedule_node::from_extension(Extension);
return Node.graft_before(NewNode);
}
static isl::schedule_node optimizePackedB(isl::schedule_node Node,
ScopStmt *Stmt, isl::map MapOldIndVar,
MicroKernelParamsTy MicroParams,
MacroKernelParamsTy MacroParams,
MatMulInfoTy &MMI) {
Scop *S = Stmt->getParent();
isl::set Domain = Stmt->getDomain();
// Create packed array.
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
unsigned SecondDimSize = MacroParams.Kc;
unsigned ThirdDimSize = MicroParams.Nr;
ScopArrayInfo *PackedB =
S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B",
{FirstDimSize, SecondDimSize, ThirdDimSize});
// Compute the access relation for copying from B to PackedB.
isl::map AccRelB = MMI.B->getLatestAccessRelation();
isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7);
AccRelPackedB =
AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId());
// Create the copy statement and redirect access.
ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain);
MMI.B->setNewAccessRelation(AccRelPackedB);
unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
assert(Dim >= 2);
// Insert into the schedule tree.
isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2);
ExtMap = ExtMap.reverse();
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
ExtMap = ExtMap.intersect_range(Domain);
ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId());
return createExtensionNode(Node, ExtMap);
}
static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *,
isl::map MapOldIndVar,
MicroKernelParamsTy MicroParams,
MacroKernelParamsTy MacroParams,
MatMulInfoTy &MMI) {
isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
isl::set Domain = Stmt->getDomain();
isl::id DomainId = Domain.get_tuple_id();
// Create the packed array.
unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr;
unsigned SecondDimSize = MacroParams.Kc;
unsigned ThirdDimSize = MicroParams.Mr;
ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo(
MMI.A->getElementType(), "Packed_A",
{FirstDimSize, SecondDimSize, ThirdDimSize});
// Compute the access relation for copying from A to PackedA.
isl::map AccRelA = MMI.A->getLatestAccessRelation();
isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6);
AccRelPackedA =
AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId());
// { MemrefA[] -> PackedA[] }
isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA);
// Compute the domain for the copy statement.
// Construct the copy statement domain out of the 3 outermost scatter
// dimensions (to match the 3 band nodes surrounding the extension node) and
// the array elements to copy (one statement instance per array element).
// { Scatter[] }
isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range();
// { Scatter[] -> OutermostScatter[] }
isl::map OuterDomainMap =
makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6);
// { Scatter[] -> MemrefA[] }
isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA);
// { Scatter[] -> CopyStmt[] }
isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom);
// { CopyStmt[] }
isl::set CopyDomain = DomainTranslator.range();
// Translate the access relations to the new domain.
// { CopyStmt[] -> MemrefA[] }
CopyFrom = CopyFrom.apply_domain(DomainTranslator);
// { CopyStmt[] -> PackedA[] }
isl::map CopyTo = CopyFrom.apply_range(PackedATranslator);
// Create the copy statement and redirect access.
ScopStmt *CopyStmt =
Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain);
MMI.A->setNewAccessRelation(AccRelPackedA);
// Insert into the schedule tree.
// { Scatter[] -> CopyStmt[] }
isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true);
ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2);
return createExtensionNode(Node, ExtScatterCopy);
}
/// Apply the packing transformation.
///
/// The packing transformation can be described as a data-layout
/// transformation that requires to introduce a new array, copy data
/// to the array, and change memory access locations to reference the array.
/// It can be used to ensure that elements of the new array are read in-stride
/// access, aligned to cache lines boundaries, and preloaded into certain cache
/// levels.
///
/// As an example let us consider the packing of the array A that would help
/// to read its elements with in-stride access. An access to the array A
/// is represented by an access relation that has the form
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
/// k mod Kc, j mod Nr, i mod Mr].
///
/// To ensure that elements of the array A are read in-stride access, we add
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
/// Scop::createScopArrayInfo, change the access relation
/// S[i, j, k] -> A[i, k] to
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
/// the copy statement created by Scop::addScopStmt.
///
/// @param Node The schedule node to be optimized.
/// @param MapOldIndVar The relation, which maps original induction variables
/// to the ones, which are produced by schedule
/// transformations.
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
/// to be taken into account.
/// @param MMI Parameters of the matrix multiplication operands.
/// @return The optimized schedule node.
static isl::schedule_node
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
MicroKernelParamsTy MicroParams,
MacroKernelParamsTy MacroParams,
MatMulInfoTy &MMI) {
isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
Node = Node.parent().parent().parent().parent().parent().parent();
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2));
Node = Node.child(0);
Node =
optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
Node = Node.child(0);
Node =
optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
return Node.child(0).child(0).child(0).child(0).child(0);
}
/// Get a relation mapping induction variables produced by schedule
/// transformations to the original ones.
///
/// @param Node The schedule node produced as the result of creation
/// of the BLIS kernels.
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
/// to be taken into account.
/// @return The relation mapping original induction variables to the ones
/// produced by schedule transformation.
/// @see ScheduleTreeOptimizer::createMicroKernel
/// @see ScheduleTreeOptimizer::createMacroKernel
/// @see getMacroKernelParams
static isl::map
getInductionVariablesSubstitution(isl::schedule_node Node,
MicroKernelParamsTy MicroKernelParams,
MacroKernelParamsTy MacroKernelParams) {
auto Child = Node.child(0);
auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
if (Dim > 9u)
return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9);
return MapOldIndVar;
}
/// Isolate a set of partial tile prefixes and unroll the isolated part.
///
/// The set should ensure that it contains only partial tile prefixes that have
/// exactly Mr x Nr iterations of the two innermost loops produced by
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
/// the micro-kernel.
///
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
/// innermost loops, using the SLP vectorizer.
///
/// @param Node The schedule node to be modified.
/// @param MicroKernelParams Parameters of the micro-kernel
/// to be taken into account.
/// @return The modified isl_schedule_node.
static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
MicroKernelParamsTy MicroKernelParams) {
isl::schedule_node Child = Node.child(0);
isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim());
assert(Dims >= 1);
Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
isl::union_set IsolateOption =
getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
isl::ctx Ctx = Node.ctx();
auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
Node = Node.parent().parent().parent();
IsolateOption = getIsolateOptions(Prefix, 3);
Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
Node = Node.child(0).child(0).child(0);
return Node;
}
/// Insert "Loop Vectorizer Disabled" mark node.
///
/// @param Node The child of the mark node to be inserted.
/// @return The modified isl_schedule_node.
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr);
return Node.insert_mark(Id).child(0);
}
/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static isl::schedule_node
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
return Node;
auto Domain = Node.get_universe_domain();
assert(isl_union_set_n_set(Domain.get()) == 1);
if (Node.get_schedule_depth().release() != 0 ||
(unsignedFromIslSize(isl::set(Domain).tuple_dim()) !=
unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member())))
return Node;
Node = isl::manage(isl_schedule_node_delete(Node.copy()));
auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
auto PartialScheduleMultiPwAff =
isl::multi_union_pw_aff(PartialSchedulePwAff);
PartialScheduleMultiPwAff =
PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
}
static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node,
const TargetTransformInfo *TTI,
MatMulInfoTy &MMI) {
assert(TTI && "The target transform info should be provided.");
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
"and, consequently, the corresponding scheduling "
"functions have at least three dimensions.");
Node = getBandNodeWithOriginDimOrder(Node);
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
Node = createMacroKernel(Node, MacroKernelParams);
Node = createMicroKernel(Node, MicroKernelParams);
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
MacroKernelParams.Kc == 1)
return Node;
auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
MacroKernelParams);
if (MapOldIndVar.is_null())
return Node;
Node = markLoopVectorizerDisabled(Node.parent()).child(0);
Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
MacroKernelParams, MMI);
}
/// Check if this node contains a partial schedule that could
/// probably be optimized with analytical modeling.
///
/// isMatrMultPattern tries to determine whether the following conditions
/// are true:
/// 1. the partial schedule contains only one statement.
/// 2. there are exactly three input dimensions.
/// 3. all memory accesses of the statement will have stride 0 or 1, if we
/// interchange loops (switch the variable used in the inner loop to
/// the outer loop).
/// 4. all memory accesses of the statement except from the last one, are
/// read memory access and the last one is write memory access.
/// 5. all subscripts of the last memory access of the statement don't
/// contain the variable used in the inner loop.
/// If this is the case, we could try to use an approach that is similar to
/// the one used to get close-to-peak performance of matrix multiplications.
///
/// @param Node The node to check.
/// @param D The SCoP dependencies.
/// @param MMI Parameters of the matrix multiplication operands.
static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D,
MatMulInfoTy &MMI) {
auto PartialSchedule = isl::manage(
isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
if (isl_schedule_node_band_n_member(Node.get()) < 3 ||
Node.get_schedule_depth().release() != 0 ||
isl_union_map_n_map(PartialSchedule.get()) != 1)
return false;
auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
if (containsMatrMult(NewPartialSchedule, D, MMI))
return true;
return false;
}
/// Get the dimension size.
///
/// Return the size of the dimension @p Pos, which is obtained from @p SAI.
/// Return -1 in the case of the first dimension of a multi-dimensional array,
/// since the ScopArrayInfo class does not carry size information.
///
/// @param SAI The information about the array.
/// @param Pos The position of the dimension.
/// @return The size of the dimension.
static int getDimSize(const ScopArrayInfo *SAI, unsigned Pos) {
if (Pos == 0)
return -1;
const llvm::SCEV *SCEVDimSize = SAI->getDimensionSize(Pos);
assert(SCEVDimSize);
auto *ConstantDimSize = dyn_cast<const SCEVConstant>(SCEVDimSize);
assert(ConstantDimSize);
auto *IntDimSize = dyn_cast<ConstantInt>(ConstantDimSize->getValue());
assert(IntDimSize);
return IntDimSize->getSExtValue();
}
/// Check whether the access relation has the specified form.
///
/// Check that the access relation @p AccMap has the form T[I0, …, In], where
/// indexes I0, …, In are specified by @p Dimensions.
///
/// @param Domain The domain of the access relation.
/// @param AccMap The access relation to be checked.
/// @param Dimensions The permutation of the subset of the input dimensions.
/// @return True if @p AccMap has the expected form and false,
/// otherwise.
static bool isCorrectAccessMap(isl::set Domain, isl::map AccMap,
ArrayRef<int> Dimensions) {
isl::space Space = AccMap.get_space();
if (unsignedFromIslSize(Space.dim(isl::dim::out)) != Dimensions.size())
return false;
// Create an access relation of the following form:
// [I0, …, Im] -> [Il, …, In], where indexes
// Il, …, In are specified by @p Dimensions.
isl::map PossibleTensor = isl::map::universe(Space);
unsigned DimInSize = unsignedFromIslSize(Space.dim(isl::dim::in));
for (unsigned i = 0; i < Dimensions.size(); i++) {
const int InPos = Dimensions[i];
if ((InPos >= static_cast<int>(DimInSize)) || (InPos < 0))
return false;
PossibleTensor =
PossibleTensor.equate(isl::dim::in, InPos, isl::dim::out, i);
}
AccMap = AccMap.intersect_domain(Domain);
PossibleTensor = PossibleTensor.intersect_domain(Domain);
// If AccMap != PossibleTensor here (the two maps have been gisted at
// this point), it means that the writes are not complete, or in other
// words, it is a Partial write and Partial writes must be rejected.
return AccMap.is_equal(PossibleTensor);
}
/// Check whether the access represents the tensor contraction operand.
///
/// Check that the access relation @p AccMap has the form T[i1, …, in].
/// Obtained indexes i1, …, in, their sizes and their permutation are stored
/// into @p IndexSet, @p DimensionSizes, and @p Dimensions, respectively.
///
/// @param Domain The domain of the access relation.
/// @param AccMap The access relation to be checked.
/// @param IndexSet The subset of the input dimensions.
/// @param DimensionSizes Sizes of the input dimensions of @p Dimensions.
/// @param Dimensions The permutation of the subset of the input dimensions.
/// @return True if @p AccMap has the expected form and false,
/// otherwise.
static bool isTCOperandAcc(isl::set Domain, isl::map AccMap,
SmallDenseSet<int> &IndexSet,
SmallVectorImpl<int> &DimensionSizes,
SmallVectorImpl<int> &Dimensions) {
isl::id Id = AccMap.get_tuple_id(isl::dim::out);
const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id);
assert(SAI && "AccMap should represent memory access");
// Fix values of output dimensions with respect to their positions.
// In the case of the tensor contraction, values of output dimensions are
// fixed and form a permutation of a subset of values of input dimensions.
//
// For example, in the case of Stmt[i][j][k] -> A[k][i], which represents
// the operand of the tensor contraction, we get the following map by fixing
// the output dimensions Stmt[1][j][0] -> A[0][1].
//
// We store the permutation of the subset of the input dimensions {2, 0} into
// @p Dimensions.
//
// The obtained permutation and the isCorrectAccessMap function are used to
// check whether the access relation @p AccMap represents the tensor
// contraction operand. For example, in the case of
// Stmt[i][j][k] -> A[i-1][j+1], we get Stmt[1][0][k] -> A[0][1] and,
// consequently, {1, 0}, which is rejected by isCorrectAccessMap,
// since it corresponds to Stmt[i][j][k] -> A[j][i].
isl::map CheckMap = isl::manage(AccMap.copy());
unsigned OutDimNum = unsignedFromIslSize(CheckMap.dim(isl::dim::out));
for (unsigned i = 0; i < OutDimNum; i++)
CheckMap = CheckMap.fix_si(isl::dim::out, i, i);
// Try to obtain the permutation and sizes of corresponding input dimensions.
Dimensions.assign(OutDimNum, -1);
for (unsigned i : rangeIslSize(0, CheckMap.dim(isl::dim::in))) {
isl::val Val = getConstant(CheckMap, isl::dim::in, i);
if (!Val.is_int())
continue;
int OutPos = -1;
llvm::APInt ValAPInt = APIntFromVal(Val);
if (ValAPInt.isSignedIntN(32))
OutPos = ValAPInt.getSExtValue();
if ((OutPos < 0) || (OutPos >= static_cast<int>(OutDimNum)) ||
IndexSet.count(i))
return false;
IndexSet.insert(i);
Dimensions[OutPos] = i;
if (DimensionSizes[i] <= 0)
DimensionSizes[i] = getDimSize(SAI, OutPos);
}
return isCorrectAccessMap(Domain, AccMap, Dimensions);
}
/// Find the intersection of two sets.
///
/// Find the intersection of the set @p A and the set @p B.
///
/// @param A, B Sets to intersect.
/// @return The set intersection.
static SmallDenseSet<int> intersect(const SmallDenseSet<int> &A,
const SmallDenseSet<int> &B) {
SmallDenseSet<int> Intersection = A;
set_intersect(Intersection, B);
return Intersection;
}
/// Check whether the set is a superset.
///
/// Check that the set @p A is a superset of @p B.
///
/// @param A, B Sets to be checked.
/// @return True if the set A is a superset of B.
static bool isSuperset(const SmallDenseSet<int> &A,
const SmallDenseSet<int> &B) {
return intersect(A, B).size() == B.size();
}
/// Find the union of two sets.
///
/// Find the union of the set @p A and the set @p B.
///
/// @param A, B Sets to unite.
/// @return The set union.
static SmallDenseSet<int> unite(const SmallDenseSet<int> &A,
const SmallDenseSet<int> &B) {
SmallDenseSet<int> Union = A;
set_union(Union, B);
return Union;
}
/// Determine the access that writes to the tensor, which contains
/// the result of the tensor contraction.
///
/// @param Domain The domain of the statement.
/// @param Stmt The statement, which writes to memory.
/// @param TCI The information about the tensor contraction.
/// @param IandJIndexSet The set, which contains free indexes of tensors.
/// @return The determined MemoryAccess, or nullptr if there is no necessary
/// access within the SCoP.
static MemoryAccess *getWriteAccess(isl::set Domain, ScopStmt *Stmt,
TCInfoTy &TCI,
SmallDenseSet<int> &IandJIndexSet) {
TCI.WriteToC = nullptr;
SmallVector<MemoryAccess *, 32> Accesses = getAccessesInOrder(*Stmt);
for (MemoryAccess *MemA : reverse(Accesses)) {
// A TC-like does not contain write scalar memory accesses
if (!MemA->isLatestArrayKind())
return nullptr;
// The last memory access should be a write memory access.
if (!MemA->isWrite())
return nullptr;
isl::map AccMap = MemA->getLatestAccessRelation();
if (!isTCOperandAcc(Domain, AccMap, IandJIndexSet, TCI.DimensionSizes,
TCI.CDimensions))
return nullptr;
return MemA;
}
return nullptr;
}
/// Determine an access, which reads elements of an operand of the tensor
/// contraction
///
/// @param MemAccessPtr The access, which reads elements of the tensor.
/// @param IndexSet The set, which contains indexes of the tensors.
/// @param IandJIndexSet The set, which contains free indexes of tensors.
/// @param Dimensions The permutation of the subset of the input dimensions.
/// @param TCI The information about the tensor contraction.
/// @return True if the memory access @p MemAccessPtr corresponds
/// to the tensor contraction.
static bool setReadAccess(MemoryAccess *MemAccessPtr,
const SmallDenseSet<int> &IndexSet,
const SmallDenseSet<int> &IandJIndexSet,
ArrayRef<int> Dimensions, TCInfoTy &TCI) {
if (!TCI.A) {
// Probably IndexSet is a union of I and P sets.
if (!isSuperset(IndexSet, TCI.P))
return false;
// Obtain the set I.
TCI.I = set_difference(IndexSet, TCI.P);
if (!isSuperset(IandJIndexSet, TCI.I))
return false;
// Obtain the set J.
TCI.J = set_difference(IandJIndexSet, TCI.I);
// Set the first operand of the tensor contraction.
TCI.A = MemAccessPtr;
llvm::replace(TCI.ADimensions, TCI.ADimensions.begin(),
TCI.ADimensions.end(), Dimensions.begin(), Dimensions.end());
return true;
}
if (!TCI.B) {
// IndexSet should be a union of J and P sets.
if (unite(TCI.P, TCI.J) != IndexSet)
return false;
// Set the second operand of the tensor contraction.
TCI.B = MemAccessPtr;
llvm::replace(TCI.BDimensions, TCI.BDimensions.begin(),
TCI.BDimensions.end(), Dimensions.begin(), Dimensions.end());
return true;
}
return false;
}
/// Check that all memory accesses of the statement, except from the last
/// one, are read memory accesses, which read elements of operands of the tensor
/// contraction and its result.
///
/// @param Domain The domain of the statement.
/// @param Stmt The statement, which writes to memory.
/// @param TCI The information about the tensor contraction.
/// @param IandJIndexSet The set, which contains free indexes of tensors.
/// @return True if all read memory accesses of the statement @p Stmt correspond
/// to the tensor contraction.
static bool setReadAccesses(isl::set Domain, ScopStmt *Stmt, TCInfoTy &TCI,
SmallDenseSet<int> &IandJIndexSet) {
TCI.A = nullptr;
TCI.B = nullptr;
TCI.ReadFromC = nullptr;
SmallVector<MemoryAccess *, 32> Accesses = getAccessesInOrder(*Stmt);
for (auto *MemA = Accesses.begin(); *MemA != TCI.WriteToC; MemA++) {
MemoryAccess *MemAccessPtr = *MemA;
// All memory accesses, except from the last one, should be read memory
// accesses.
if (MemAccessPtr->isWrite())
return false;
isl::map AccMap = MemAccessPtr->getLatestAccessRelation();
if (!MemAccessPtr->isLatestArrayKind()) {
// Check whether the scalar read memory access is not partial.
if (!Domain.is_subset(AccMap.domain()))
return false;
continue;
return false;
}
// There is only one memory access, which reads elements of the result of
// the tensor contraction.
if (AccMap.is_equal(TCI.WriteToC->getLatestAccessRelation())) {
if (TCI.ReadFromC)
return false;
TCI.ReadFromC = MemAccessPtr;
continue;
}
SmallVector<int> Dimensions;
SmallDenseSet<int> IndexSet;
if (!isTCOperandAcc(Domain, AccMap, IndexSet, TCI.DimensionSizes,
Dimensions))
return false;
if (!setReadAccess(MemAccessPtr, IndexSet, IandJIndexSet, Dimensions, TCI))
return false;
}
// Check that there are read memory accesses, which read elements of operands
// of the tensor contraction and its result.
return TCI.ReadFromC && TCI.A && TCI.B;
}
/// Check accesses to operands of the tensor contraction.
///
/// Check that accesses of the SCoP statement, which corresponds to
/// the partial schedule @p PartialSchedule, represent accesses
/// to the non-scalar operands of the tensor contraction.
///
/// @param Domain The domain of the SCoP statement.
/// @param PartialSchedule The partial schedule of the SCoP statement.
/// @param TCI Parameters of the tensor contraction operands.
/// @return True if the corresponding SCoP statement
/// represents tensor contraction and false,
/// otherwise.
static bool containsOnlyTCAcc(isl::set Domain, isl::map PartialSchedule,
TCInfoTy &TCI) {
isl::id InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
// In region statements, the order of memory accesses execution is not
// predictable at compile-time.
if ((Stmt->size() <= 1) || Stmt->isRegionStmt())
return false;
unsigned DimNum = unsignedFromIslSize(PartialSchedule.dim(isl::dim::in));
TCI.DimensionSizes.resize(DimNum);
SmallDenseSet<int> IandJIndexSet;
TCI.WriteToC = getWriteAccess(Domain, Stmt, TCI, IandJIndexSet);
if (!TCI.WriteToC)
return false;
if (intersect(IandJIndexSet, TCI.P).size() != 0)
return false;
if (!setReadAccesses(Domain, Stmt, TCI, IandJIndexSet))
return false;
return true;
}
/// Check that dependency corresponds to the tensor contraction carried over
/// loop dimension @p Dim.
///
/// Check that the dependency has the form
/// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
/// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
/// statement. For this purpose, we analyze the set @p DepDelta, which
/// represents the differences between image elements and domain elements of
/// the corresponding map.
///
/// @param DepDelta The set contains the differences between image elements
/// and corresponding domain elements of the map, which
/// represents the dependency.
/// @param Dim The position of the index ki.
/// @param BoundDeltas In the case of indexes of ki, the difference between
/// image elements and corresponding domain elements
/// corresponds to the difference between lexicographic
/// minimum and lexicographic maximum of the corresponding
/// dimension of the domain of the statement.
/// @param IndexSet Obtained indexes ki, which describe the dependency.
/// @return True if dependencies correspond to the tensor contraction
/// and false, otherwise.
static bool isReductionCarriedOverDim(isl::set DepDelta, unsigned Dim,
isl::pw_multi_aff BoundDeltas,
const SmallDenseSet<int> &IndexSet) {
isl::space Space = DepDelta.get_space();
isl::set Superset = isl::set::universe(Space);
for (unsigned i = 0; i < Dim; i += 1)
Superset = Superset.fix_si(isl::dim::set, i, 0);
Superset = Superset.fix_si(isl::dim::set, Dim, 1);
// Check that the difference between the image element and the domain element
// is equal to one in the case of the index ki. Image elements and
// corresponding domain elements should be equal in the case of positions,
// which are lower than the specified position.
if (!DepDelta.is_subset(Superset))
return false;
// Compute a set, which is used to analyze how values of
// the domain are related to the map that describes the dependency.
isl_pw_multi_aff *DepDeltaPW = isl_pw_multi_aff_from_set(DepDelta.copy());
BoundDeltas = BoundDeltas.add(isl::manage(DepDeltaPW));
isl_set *ComplementRawSet = isl_set_from_pw_multi_aff(BoundDeltas.release());
isl::set Complement = isl::manage(ComplementRawSet);
for (unsigned i : rangeIslSize(Dim + 1, DepDelta.dim(isl::dim::set))) {
if (!IndexSet.count(i)) {
// Check the difference between the image element and the domain element
// in the case of indexes, which do not describe the dependency.
if (DepDelta.plain_get_val_if_fixed(isl::dim::set, i).is_zero())
continue;
return false;
}
// In the case of other indexes, which describe the dependency,
// the difference between the image element and the domain element
// should be equal to the difference between lexicographic minimum and
// lexicographic maximum of the domain of the statement.
if (!Complement.plain_get_val_if_fixed(isl::dim::set, i).is_zero())
return false;
}
return true;
}
/// Check whether dependencies are over the complete domain.
///
/// In the case of the tensor contraction RAW, WAW, WAR dependencies
/// have the form
/// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
/// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
/// statement. Consequently, the domain of the dependencies
/// can be described as
/// Domain / Domain ∩ S(…, max(kn),…) ∩ S(…, max(k(i + 1)),…),
/// where Domain is the domain of the statement S.
///
/// For example, in the case of the following tensor contraction,
/// corresponding domains will have the following form.
///
/// An example of the tensor contraction:
/// for (i = 0; i < 1024; i++)
/// for (j = 0; j < 1024; j++)
/// for (l = 0; l < 64; ++l)
/// for (w = 0; w < 64; ++w)
/// C[i][j] += A[i][l][w] * B[w][j][l];
///
/// The domain of the statement:
/// { S[i0, i1, i2, i3] : i0 >= 0 and i0 <= 1023 and
/// i1 >= 0 and i1 <= 1023 and
/// i2 >= 0 and i2 <= 63 and
/// i3 >= 0 and i3 <= 63 }
///
/// The domain of the dependencies:
/// { S[i0, i1, i2, i3] : (i0 >= 0 and i0 <= 1023 and
/// i1 >= 0 and i1 <= 1023 and
/// i2 >= 0 and i2 <= 63 and
/// i3 >= 0 and i3 <= 62) or
/// (i3 = 63 and i0 >= 0 and i0 <= 1023 and
/// i1 >= 0 and i1 <= 1023 and
/// i2 >= 0 and i2 <= 62) }
///
/// @param Domain The domain of the statement.
/// @param DepsForStmt RAW and RED dependencies for the statement.
/// @param UpperBound The lexicographic maximum of the elements in
/// the @p Domain.
/// @param IndexSet Obtained indexes ki, which describe the dependencies.
/// @return True if dependencies are over the complete domain
/// and false, otherwise.
static bool areDepsOverCompleteDomain(isl::set Domain, isl::map DepsForStmt,
isl::pw_multi_aff UpperBound,
SmallDenseSet<int> &IndexSet) {
isl_set *UpperBoundRawSet = isl_set_from_pw_multi_aff(UpperBound.copy());
isl::set UpperBoundSet = isl::manage(UpperBoundRawSet);
isl::set DomainRed = isl::manage(Domain.copy());
for (const auto It : IndexSet) {
isl::val FixedVal = UpperBoundSet.plain_get_val_if_fixed(isl::dim::set, It);
if (FixedVal.is_nan())
return false;
DomainRed = isl::manage(
isl_set_fix_val(DomainRed.copy(), isl_dim_set, It, FixedVal.release()));
}
return DepsForStmt.domain().intersect(Domain).is_equal(
Domain.subtract(DomainRed));
}
/// Check that dependencies correspond to the tensor contraction.
///
/// Check that there are only true dependencies of the form
/// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
/// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
/// statement represented by @p Schedule. Such dependencies are produced by
/// the tensor contraction. Obtained indexes ki are stored into @p IndexSet.
///
/// The form of anti and output dependencies is specified implicitly by
/// the form the SCoP statement, which is checked by subsequent analysis.
///
/// @param Schedule The schedule of the SCoP statement.
/// @param D The SCoP dependencies.
/// @param Domain The domain of the statement.
/// @param IndexSet Obtained indexes ki, which describe the dependencies.
/// @return True if dependencies correspond to the tensor contraction
/// and false, otherwise.
static bool containsOnlyTcDeps(isl::map Schedule, const Dependences *D,
SmallDenseSet<int> &IndexSet, isl::set Domain) {
IslMaxOperationsGuard MaxOpGuard(Schedule.ctx().get(), OptComputeOut);
isl::union_map Dep =
D->getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED);
isl::space DomainSpace = Schedule.get_space().domain();
isl::space Space = DomainSpace.map_from_domain_and_range(DomainSpace);
isl::map DepsForStmt = Dep.extract_map(Space);
isl::set DepDeltas = DepsForStmt.deltas();
isl::size DeltasDimNum = DepDeltas.dim(isl::dim::set);
isl::pw_multi_aff LowerBound = Domain.lexmin_pw_multi_aff();
isl::pw_multi_aff UpperBound = Domain.lexmax_pw_multi_aff();
isl::pw_multi_aff BoundDeltas = UpperBound.sub(LowerBound);
for (int i : reverse(rangeIslSize(0, DeltasDimNum))) {
// In the case of the tensor contraction, the difference between image
// elements and domain elements lies on a hyperplane where a dimension
// has the fixed value one.
isl::set Intersection = DepDeltas.fix_si(isl::dim::set, i, 1);
if (Intersection.is_empty())
continue;
if (!isReductionCarriedOverDim(Intersection, i, BoundDeltas, IndexSet))
return false;
IndexSet.insert(i);
DepDeltas = DepDeltas.subtract(Intersection);
}
// In the case of the tensor contraction, all dependencies should have
// the previously described form.
if ((unsignedFromIslSize(DeltasDimNum) == 0) || !DepDeltas.is_empty())
return false;
return areDepsOverCompleteDomain(Domain, DepsForStmt, UpperBound, IndexSet);
}
/// Check if the SCoP statement could probably be optimized with analytical
/// modeling.
///
/// containsTCInfoTy tries to determine whether the following conditions
/// are true:
///
/// 1. The last memory access modeling an array, MA1, represents writing to
/// memory and has the form S(..., I, ..., J, ...) -> M(shuffle(I, J)),
/// where S is the SCoP statement under consideration and shuffle(I, J)
/// is a permutation of indexes of sets I and J.
/// 2. There are only true dependencies of the form
/// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
/// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
/// statement represented by @p Schedule and ki are indexes of the set P.
/// 3. SCoP contains an arbitrary number of reads from constants and only three
/// access relations, MA2, MA3, and MA4 that represent reading from memory
/// and have the form
/// S(..., I, ..., P, ...) -> M(shuffle(I, P)),
/// S(..., P, ..., J, ...) -> M(shuffle(J, P)),
/// S(...) -> M(shuffle(I, J)), respectively.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
/// to check.
/// @param D The SCoP dependencies.
/// @param TCI Parameters of the tensor contraction operands.
/// @param Domain The domain of the statement.
/// @return True if dependencies and memory accesses correspond to the tensor
/// contraction and false, otherwise.
static bool containsTCInfoTy(isl::map PartialSchedule, const Dependences *D,
TCInfoTy &TCI, isl::set Domain) {
if (!containsOnlyTcDeps(PartialSchedule, D, TCI.P, Domain))
return false;
// TODO: handle cases of scalar multiplication if needed.
if (TCI.P.size() == 0)
return false;
if (!containsOnlyTCAcc(Domain, PartialSchedule, TCI))
return false;
// TODO: handle cases of GEMV if needed.
if ((TCI.I.size() == 0) || (TCI.J.size() == 0))
return false;
return true;
}
/// Check if this node contains a partial schedule that could
/// probably be optimized with analytical modeling.
///
/// isTCPattern is used to determine whether the SCoP represents a TC-like
/// kernel [1], which is a perfectly nested set of loops, with a data usage
/// pattern that is similar to that produced by the tensor contraction.
///
/// A TC-like kernel can be defined as follows:
///
/// 1. It satisfies the requirements of the polyhedral model.
/// 2. Without loss of generality, it contains three nonempty bundles of
/// one-dimensional for-loops with induction variables that are grouped into
/// bundles I = i0...i(r-1), J = j0..j(s-1), and P = p0...p(t-1), and they
/// are incremented by one.
/// 3. The innermost loop body can be represented as a statement of the form
/// C(shuffle(I, J)) = E(A(shuffle(I, P)), B(shuffle(P, J)),
/// C(shuffle(I, J))), where A(shuffle(I, P)), B(shuffle(P, J)),
/// C(shuffle(I, J)) are accesses to tensors A, B, C, respectively,
/// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of the
/// enclosed indices, and E is an expression that contains reads from
/// the tensors A, B, C, and an arbitrary number of reads from constants
/// with respect to bundles I, J, and P.
///
/// TC can be considered as a particular case of a TC-like kernel.
///
/// The order of loops with indexes from P should be preserved. Otherwise,
/// isTCPattern should check if a commutative operation is used.
///
/// isTCPattern performs the following steps to check whether the SCoP
/// corresponds to a definition of a TC-like kernel:
///
/// 1. Checks that the node is the innermost band node.
/// 2. Checks that the partial schedule contains only one statement.
/// 3. Check that all ancestors of the node contain all band nodes for
/// the statement and only mark nodes interleave such band nodes. This
/// corresponds to a straightforward implementation of TC.
/// 4. Analyses the dependencies to determine contraction dimensions.
/// 5. Check that the last memory access modeling an array, represents writing
/// to the result of the TC-like kernel.
/// 6. Check that SCoP contains only three access relations that represent
/// reading of the operands of the TC-like kernel and an arbitrary number of
/// reads from constants.
///
/// [1] - Gareev R., Grosser T., Kruse M. High-Performance Generalized Tensor
/// Operations: A Compiler-Oriented Approach // ACM Transactions
/// Architecture and Code Optimization (TACO). 2018.
/// Vol. 15, no. 3. P. 34:134:27. DOI: 10.1145/3235029.
///
/// If this is the case, we could logically represent tensors as matrices and
/// apply algorithms, which are used to get close-to-peak performance of
/// matrix multiplications in manually tuned BLAS libraries (e.g., BLIS).
///
/// @param Node The node to check.
/// @param D The SCoP dependencies.
/// @param TCI Parameters of the tensor contraction operands.
static bool isTCPattern(isl::schedule_node Node, const Dependences *D,
TCInfoTy &TCI) {
Node = Node.child(0);
isl::union_map PartialSchedule = Node.get_prefix_schedule_union_map();
isl::union_set Domain = Node.domain();
Node = Node.parent();
// The partial schedule should contain only one statement.
// TODO: This constraint should not be intrinsic to the algorithm.
if (isl_union_set_n_set(Domain.get()) != 1)
return false;
isl_schedule_node_type NodeType = isl_schedule_node_get_type(Node.get());
// Check that all ancestors of the node contain all band nodes for
// the statement, which represents the TC-like kernel, and only mark nodes
// interleave such band nodes. This corresponds to a straightforward
// implementation of TC with/without DeLICM applied.
//
// For example, this covers the matrix multiplication pattern after a full
// run of -polly-optree and -polly-delicm, where the write access is not
// through the original memory access, but trough a PHI node that was
// delicmed. Subsequently, such band nodes will be replaced by a single band
// node.
//
// The corresponding schedule can be the following, where Stmt_for_body8
// contains the matrix multiplication:
//
// domain: "{ Stmt_for_body8[i0, i1, i2] : 0 <= i0 <= 1599 and
// 0 <= i1 <= 1799 and
// 0 <= i2 <= 2199;
// Stmt_for_body3[i0, i1] : 0 <= i0 <= 1599 and
// 0 <= i1 <= 1799;
// Stmt_for_body3_last[i0, i1] : 0 <= i0 <= 1599 and
// 0 <= i1 <= 1799 }"
// child:
// sequence:
// - filter: "{ Stmt_for_body3[i0, i1] }"
// child:
// schedule: "[{ Stmt_for_body3[i0, i1] -> [(i0)] },
// { Stmt_for_body3[i0, i1] -> [(i1)] }]"
// permutable: 1
// coincident: [ 1, 1 ]
// - filter: "{ Stmt_for_body3_last[i0, i1] }"
// child:
// schedule: "[{ Stmt_for_body3_last[i0, i1] -> [(i0)] },
// { Stmt_for_body3_last[i0, i1] -> [(i1)] }]"
// permutable: 1
// coincident: [ 1, 1 ]
// - filter: "{ Stmt_for_body8[i0, i1, i2] }"
// child:
// schedule: "[{ Stmt_for_body8[i0, i1, i2] -> [(i0)] },
// { Stmt_for_body8[i0, i1, i2] -> [(i1)] },
// { Stmt_for_body8[i0, i1, i2] -> [(i2)] }]"
// permutable: 1
// coincident: [ 1, 1, 0 ]
//
while (NodeType != isl_schedule_node_domain) {
if (NodeType == isl_schedule_node_filter) {
if (!Node.parent().isa<isl::schedule_node_sequence>() ||
!Node.parent().parent().isa<isl::schedule_node_domain>())
return false;
break;
}
if ((NodeType != isl_schedule_node_band) &&
(NodeType != isl_schedule_node_mark))
return false;
Node = Node.parent();
NodeType = isl_schedule_node_get_type(Node.get());
}
isl::map PartialScheduleMap = isl::map::from_union_map(PartialSchedule);
if (containsTCInfoTy(PartialScheduleMap, D, TCI, isl::set(Domain)))
return true;
return false;
}
} // namespace
isl::schedule_node
polly::tryOptimizeMatMulPattern(isl::schedule_node Node,
const llvm::TargetTransformInfo *TTI,
const Dependences *D) {
TCInfoTy TCI;
if (PMBasedTCOpts && isTCPattern(Node, D, TCI))
LLVM_DEBUG(dbgs() << "The tensor contraction pattern was detected\n");
MatMulInfoTy MMI;
if (PMBasedMMMOpts && isMatrMultPattern(Node, D, MMI)) {
LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
return optimizeMatMulPattern(Node, TTI, MMI);
}
return {};
}