forked from OSchip/llvm-project
1626 lines
58 KiB
C++
1626 lines
58 KiB
C++
//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements the Sparse Conditional Constant Propagation (SCCP)
|
|
// utility.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/SCCPSolver.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/ValueLattice.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "sccp"
|
|
|
|
// The maximum number of range extensions allowed for operations requiring
|
|
// widening.
|
|
static const unsigned MaxNumRangeExtensions = 10;
|
|
|
|
/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
|
|
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
|
|
return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
|
|
MaxNumRangeExtensions);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Helper to check if \p LV is either a constant or a constant
|
|
// range with a single element. This should cover exactly the same cases as the
|
|
// old ValueLatticeElement::isConstant() and is intended to be used in the
|
|
// transition to ValueLatticeElement.
|
|
bool isConstant(const ValueLatticeElement &LV) {
|
|
return LV.isConstant() ||
|
|
(LV.isConstantRange() && LV.getConstantRange().isSingleElement());
|
|
}
|
|
|
|
// Helper to check if \p LV is either overdefined or a constant range with more
|
|
// than a single element. This should cover exactly the same cases as the old
|
|
// ValueLatticeElement::isOverdefined() and is intended to be used in the
|
|
// transition to ValueLatticeElement.
|
|
bool isOverdefined(const ValueLatticeElement &LV) {
|
|
return !LV.isUnknownOrUndef() && !isConstant(LV);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
/// Helper class for SCCPSolver. This implements the instruction visitor and
|
|
/// holds all the state.
|
|
class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
|
|
const DataLayout &DL;
|
|
std::function<const TargetLibraryInfo &(Function &)> GetTLI;
|
|
SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
|
|
DenseMap<Value *, ValueLatticeElement>
|
|
ValueState; // The state each value is in.
|
|
|
|
/// StructValueState - This maintains ValueState for values that have
|
|
/// StructType, for example for formal arguments, calls, insertelement, etc.
|
|
DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
|
|
|
|
/// GlobalValue - If we are tracking any values for the contents of a global
|
|
/// variable, we keep a mapping from the constant accessor to the element of
|
|
/// the global, to the currently known value. If the value becomes
|
|
/// overdefined, it's entry is simply removed from this map.
|
|
DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
|
|
|
|
/// TrackedRetVals - If we are tracking arguments into and the return
|
|
/// value out of a function, it will have an entry in this map, indicating
|
|
/// what the known return value for the function is.
|
|
MapVector<Function *, ValueLatticeElement> TrackedRetVals;
|
|
|
|
/// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
|
|
/// that return multiple values.
|
|
MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
|
|
TrackedMultipleRetVals;
|
|
|
|
/// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
|
|
/// represented here for efficient lookup.
|
|
SmallPtrSet<Function *, 16> MRVFunctionsTracked;
|
|
|
|
/// A list of functions whose return cannot be modified.
|
|
SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
|
|
|
|
/// TrackingIncomingArguments - This is the set of functions for whose
|
|
/// arguments we make optimistic assumptions about and try to prove as
|
|
/// constants.
|
|
SmallPtrSet<Function *, 16> TrackingIncomingArguments;
|
|
|
|
/// The reason for two worklists is that overdefined is the lowest state
|
|
/// on the lattice, and moving things to overdefined as fast as possible
|
|
/// makes SCCP converge much faster.
|
|
///
|
|
/// By having a separate worklist, we accomplish this because everything
|
|
/// possibly overdefined will become overdefined at the soonest possible
|
|
/// point.
|
|
SmallVector<Value *, 64> OverdefinedInstWorkList;
|
|
SmallVector<Value *, 64> InstWorkList;
|
|
|
|
// The BasicBlock work list
|
|
SmallVector<BasicBlock *, 64> BBWorkList;
|
|
|
|
/// KnownFeasibleEdges - Entries in this set are edges which have already had
|
|
/// PHI nodes retriggered.
|
|
using Edge = std::pair<BasicBlock *, BasicBlock *>;
|
|
DenseSet<Edge> KnownFeasibleEdges;
|
|
|
|
DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
|
|
DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
|
|
|
|
LLVMContext &Ctx;
|
|
|
|
private:
|
|
ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
|
|
return dyn_cast_or_null<ConstantInt>(getConstant(IV));
|
|
}
|
|
|
|
// pushToWorkList - Helper for markConstant/markOverdefined
|
|
void pushToWorkList(ValueLatticeElement &IV, Value *V);
|
|
|
|
// Helper to push \p V to the worklist, after updating it to \p IV. Also
|
|
// prints a debug message with the updated value.
|
|
void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
|
|
|
|
// markConstant - Make a value be marked as "constant". If the value
|
|
// is not already a constant, add it to the instruction work list so that
|
|
// the users of the instruction are updated later.
|
|
bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
|
|
bool MayIncludeUndef = false);
|
|
|
|
bool markConstant(Value *V, Constant *C) {
|
|
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
|
|
return markConstant(ValueState[V], V, C);
|
|
}
|
|
|
|
// markOverdefined - Make a value be marked as "overdefined". If the
|
|
// value is not already overdefined, add it to the overdefined instruction
|
|
// work list so that the users of the instruction are updated later.
|
|
bool markOverdefined(ValueLatticeElement &IV, Value *V);
|
|
|
|
/// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
|
|
/// changes.
|
|
bool mergeInValue(ValueLatticeElement &IV, Value *V,
|
|
ValueLatticeElement MergeWithV,
|
|
ValueLatticeElement::MergeOptions Opts = {
|
|
/*MayIncludeUndef=*/false, /*CheckWiden=*/false});
|
|
|
|
bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
|
|
ValueLatticeElement::MergeOptions Opts = {
|
|
/*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
|
|
assert(!V->getType()->isStructTy() &&
|
|
"non-structs should use markConstant");
|
|
return mergeInValue(ValueState[V], V, MergeWithV, Opts);
|
|
}
|
|
|
|
/// getValueState - Return the ValueLatticeElement object that corresponds to
|
|
/// the value. This function handles the case when the value hasn't been seen
|
|
/// yet by properly seeding constants etc.
|
|
ValueLatticeElement &getValueState(Value *V) {
|
|
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
|
|
|
|
auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
|
|
ValueLatticeElement &LV = I.first->second;
|
|
|
|
if (!I.second)
|
|
return LV; // Common case, already in the map.
|
|
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
LV.markConstant(C); // Constants are constant
|
|
|
|
// All others are unknown by default.
|
|
return LV;
|
|
}
|
|
|
|
/// getStructValueState - Return the ValueLatticeElement object that
|
|
/// corresponds to the value/field pair. This function handles the case when
|
|
/// the value hasn't been seen yet by properly seeding constants etc.
|
|
ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
|
|
assert(V->getType()->isStructTy() && "Should use getValueState");
|
|
assert(i < cast<StructType>(V->getType())->getNumElements() &&
|
|
"Invalid element #");
|
|
|
|
auto I = StructValueState.insert(
|
|
std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
|
|
ValueLatticeElement &LV = I.first->second;
|
|
|
|
if (!I.second)
|
|
return LV; // Common case, already in the map.
|
|
|
|
if (auto *C = dyn_cast<Constant>(V)) {
|
|
Constant *Elt = C->getAggregateElement(i);
|
|
|
|
if (!Elt)
|
|
LV.markOverdefined(); // Unknown sort of constant.
|
|
else
|
|
LV.markConstant(Elt); // Constants are constant.
|
|
}
|
|
|
|
// All others are underdefined by default.
|
|
return LV;
|
|
}
|
|
|
|
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
|
|
/// work list if it is not already executable.
|
|
bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
|
|
|
|
// OperandChangedState - This method is invoked on all of the users of an
|
|
// instruction that was just changed state somehow. Based on this
|
|
// information, we need to update the specified user of this instruction.
|
|
void operandChangedState(Instruction *I) {
|
|
if (BBExecutable.count(I->getParent())) // Inst is executable?
|
|
visit(*I);
|
|
}
|
|
|
|
// Add U as additional user of V.
|
|
void addAdditionalUser(Value *V, User *U) {
|
|
auto Iter = AdditionalUsers.insert({V, {}});
|
|
Iter.first->second.insert(U);
|
|
}
|
|
|
|
// Mark I's users as changed, including AdditionalUsers.
|
|
void markUsersAsChanged(Value *I) {
|
|
// Functions include their arguments in the use-list. Changed function
|
|
// values mean that the result of the function changed. We only need to
|
|
// update the call sites with the new function result and do not have to
|
|
// propagate the call arguments.
|
|
if (isa<Function>(I)) {
|
|
for (User *U : I->users()) {
|
|
if (auto *CB = dyn_cast<CallBase>(U))
|
|
handleCallResult(*CB);
|
|
}
|
|
} else {
|
|
for (User *U : I->users())
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
operandChangedState(UI);
|
|
}
|
|
|
|
auto Iter = AdditionalUsers.find(I);
|
|
if (Iter != AdditionalUsers.end()) {
|
|
// Copy additional users before notifying them of changes, because new
|
|
// users may be added, potentially invalidating the iterator.
|
|
SmallVector<Instruction *, 2> ToNotify;
|
|
for (User *U : Iter->second)
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
ToNotify.push_back(UI);
|
|
for (Instruction *UI : ToNotify)
|
|
operandChangedState(UI);
|
|
}
|
|
}
|
|
void handleCallOverdefined(CallBase &CB);
|
|
void handleCallResult(CallBase &CB);
|
|
void handleCallArguments(CallBase &CB);
|
|
|
|
private:
|
|
friend class InstVisitor<SCCPInstVisitor>;
|
|
|
|
// visit implementations - Something changed in this instruction. Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate.
|
|
void visitPHINode(PHINode &I);
|
|
|
|
// Terminators
|
|
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitTerminator(Instruction &TI);
|
|
|
|
void visitCastInst(CastInst &I);
|
|
void visitSelectInst(SelectInst &I);
|
|
void visitUnaryOperator(Instruction &I);
|
|
void visitBinaryOperator(Instruction &I);
|
|
void visitCmpInst(CmpInst &I);
|
|
void visitExtractValueInst(ExtractValueInst &EVI);
|
|
void visitInsertValueInst(InsertValueInst &IVI);
|
|
|
|
void visitCatchSwitchInst(CatchSwitchInst &CPI) {
|
|
markOverdefined(&CPI);
|
|
visitTerminator(CPI);
|
|
}
|
|
|
|
// Instructions that cannot be folded away.
|
|
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
|
|
void visitInvokeInst(InvokeInst &II) {
|
|
visitCallBase(II);
|
|
visitTerminator(II);
|
|
}
|
|
|
|
void visitCallBrInst(CallBrInst &CBI) {
|
|
visitCallBase(CBI);
|
|
visitTerminator(CBI);
|
|
}
|
|
|
|
void visitCallBase(CallBase &CB);
|
|
void visitResumeInst(ResumeInst &I) { /*returns void*/
|
|
}
|
|
void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
|
|
}
|
|
void visitFenceInst(FenceInst &I) { /*returns void*/
|
|
}
|
|
|
|
void visitInstruction(Instruction &I);
|
|
|
|
public:
|
|
void addAnalysis(Function &F, AnalysisResultsForFn A) {
|
|
AnalysisResults.insert({&F, std::move(A)});
|
|
}
|
|
|
|
void visitCallInst(CallInst &I) { visitCallBase(I); }
|
|
|
|
bool markBlockExecutable(BasicBlock *BB);
|
|
|
|
const PredicateBase *getPredicateInfoFor(Instruction *I) {
|
|
auto A = AnalysisResults.find(I->getParent()->getParent());
|
|
if (A == AnalysisResults.end())
|
|
return nullptr;
|
|
return A->second.PredInfo->getPredicateInfoFor(I);
|
|
}
|
|
|
|
const LoopInfo &getLoopInfo(Function &F) {
|
|
auto A = AnalysisResults.find(&F);
|
|
assert(A != AnalysisResults.end() && A->second.LI &&
|
|
"Need LoopInfo analysis results for function.");
|
|
return *A->second.LI;
|
|
}
|
|
|
|
DomTreeUpdater getDTU(Function &F) {
|
|
auto A = AnalysisResults.find(&F);
|
|
assert(A != AnalysisResults.end() && "Need analysis results for function.");
|
|
return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
|
|
}
|
|
|
|
SCCPInstVisitor(const DataLayout &DL,
|
|
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
|
|
LLVMContext &Ctx)
|
|
: DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
|
|
|
|
void trackValueOfGlobalVariable(GlobalVariable *GV) {
|
|
// We only track the contents of scalar globals.
|
|
if (GV->getValueType()->isSingleValueType()) {
|
|
ValueLatticeElement &IV = TrackedGlobals[GV];
|
|
IV.markConstant(GV->getInitializer());
|
|
}
|
|
}
|
|
|
|
void addTrackedFunction(Function *F) {
|
|
// Add an entry, F -> undef.
|
|
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
|
|
MRVFunctionsTracked.insert(F);
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
TrackedMultipleRetVals.insert(
|
|
std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
|
|
} else if (!F->getReturnType()->isVoidTy())
|
|
TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
|
|
}
|
|
|
|
void addToMustPreserveReturnsInFunctions(Function *F) {
|
|
MustPreserveReturnsInFunctions.insert(F);
|
|
}
|
|
|
|
bool mustPreserveReturn(Function *F) {
|
|
return MustPreserveReturnsInFunctions.count(F);
|
|
}
|
|
|
|
void addArgumentTrackedFunction(Function *F) {
|
|
TrackingIncomingArguments.insert(F);
|
|
}
|
|
|
|
bool isArgumentTrackedFunction(Function *F) {
|
|
return TrackingIncomingArguments.count(F);
|
|
}
|
|
|
|
void solve();
|
|
|
|
bool resolvedUndefsIn(Function &F);
|
|
|
|
bool isBlockExecutable(BasicBlock *BB) const {
|
|
return BBExecutable.count(BB);
|
|
}
|
|
|
|
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
|
|
|
|
std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
|
|
std::vector<ValueLatticeElement> StructValues;
|
|
auto *STy = dyn_cast<StructType>(V->getType());
|
|
assert(STy && "getStructLatticeValueFor() can be called only on structs");
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
auto I = StructValueState.find(std::make_pair(V, i));
|
|
assert(I != StructValueState.end() && "Value not in valuemap!");
|
|
StructValues.push_back(I->second);
|
|
}
|
|
return StructValues;
|
|
}
|
|
|
|
void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
|
|
|
|
const ValueLatticeElement &getLatticeValueFor(Value *V) const {
|
|
assert(!V->getType()->isStructTy() &&
|
|
"Should use getStructLatticeValueFor");
|
|
DenseMap<Value *, ValueLatticeElement>::const_iterator I =
|
|
ValueState.find(V);
|
|
assert(I != ValueState.end() &&
|
|
"V not found in ValueState nor Paramstate map!");
|
|
return I->second;
|
|
}
|
|
|
|
const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
|
|
return TrackedRetVals;
|
|
}
|
|
|
|
const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
|
|
return TrackedGlobals;
|
|
}
|
|
|
|
const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
|
|
return MRVFunctionsTracked;
|
|
}
|
|
|
|
void markOverdefined(Value *V) {
|
|
if (auto *STy = dyn_cast<StructType>(V->getType()))
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
markOverdefined(getStructValueState(V, i), V);
|
|
else
|
|
markOverdefined(ValueState[V], V);
|
|
}
|
|
|
|
bool isStructLatticeConstant(Function *F, StructType *STy);
|
|
|
|
Constant *getConstant(const ValueLatticeElement &LV) const;
|
|
ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty) const;
|
|
|
|
SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
|
|
return TrackingIncomingArguments;
|
|
}
|
|
|
|
void markArgInFuncSpecialization(Function *F,
|
|
const SmallVectorImpl<ArgInfo> &Args);
|
|
|
|
void markFunctionUnreachable(Function *F) {
|
|
for (auto &BB : *F)
|
|
BBExecutable.erase(&BB);
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
|
|
if (!BBExecutable.insert(BB).second)
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
|
|
BBWorkList.push_back(BB); // Add the block to the work list!
|
|
return true;
|
|
}
|
|
|
|
void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
|
|
if (IV.isOverdefined())
|
|
return OverdefinedInstWorkList.push_back(V);
|
|
InstWorkList.push_back(V);
|
|
}
|
|
|
|
void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
|
|
LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
|
|
pushToWorkList(IV, V);
|
|
}
|
|
|
|
bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
|
|
Constant *C, bool MayIncludeUndef) {
|
|
if (!IV.markConstant(C, MayIncludeUndef))
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
|
|
pushToWorkList(IV, V);
|
|
return true;
|
|
}
|
|
|
|
bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
|
|
if (!IV.markOverdefined())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "markOverdefined: ";
|
|
if (auto *F = dyn_cast<Function>(V)) dbgs()
|
|
<< "Function '" << F->getName() << "'\n";
|
|
else dbgs() << *V << '\n');
|
|
// Only instructions go on the work list
|
|
pushToWorkList(IV, V);
|
|
return true;
|
|
}
|
|
|
|
bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
|
|
assert(It != TrackedMultipleRetVals.end());
|
|
ValueLatticeElement LV = It->second;
|
|
if (!isConstant(LV))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
|
|
if (LV.isConstant())
|
|
return LV.getConstant();
|
|
|
|
if (LV.isConstantRange()) {
|
|
const auto &CR = LV.getConstantRange();
|
|
if (CR.getSingleElement())
|
|
return ConstantInt::get(Ctx, *CR.getSingleElement());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ConstantRange
|
|
SCCPInstVisitor::getConstantRange(const ValueLatticeElement &LV,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
|
|
if (LV.isConstantRange())
|
|
return LV.getConstantRange();
|
|
return ConstantRange::getFull(Ty->getScalarSizeInBits());
|
|
}
|
|
|
|
void SCCPInstVisitor::markArgInFuncSpecialization(
|
|
Function *F, const SmallVectorImpl<ArgInfo> &Args) {
|
|
assert(!Args.empty() && "Specialization without arguments");
|
|
assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
|
|
"Functions should have the same number of arguments");
|
|
|
|
auto Iter = Args.begin();
|
|
Argument *NewArg = F->arg_begin();
|
|
Argument *OldArg = Args[0].Formal->getParent()->arg_begin();
|
|
for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
|
|
|
|
LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
|
|
<< NewArg->getNameOrAsOperand() << "\n");
|
|
|
|
if (Iter != Args.end() && OldArg == Iter->Formal) {
|
|
// Mark the argument constants in the new function.
|
|
markConstant(NewArg, Iter->Actual);
|
|
++Iter;
|
|
} else if (ValueState.count(OldArg)) {
|
|
// For the remaining arguments in the new function, copy the lattice state
|
|
// over from the old function.
|
|
//
|
|
// Note: This previously looked like this:
|
|
// ValueState[NewArg] = ValueState[OldArg];
|
|
// This is incorrect because the DenseMap class may resize the underlying
|
|
// memory when inserting `NewArg`, which will invalidate the reference to
|
|
// `OldArg`. Instead, we make sure `NewArg` exists before setting it.
|
|
auto &NewValue = ValueState[NewArg];
|
|
NewValue = ValueState[OldArg];
|
|
pushToWorkList(NewValue, NewArg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SCCPInstVisitor::visitInstruction(Instruction &I) {
|
|
// All the instructions we don't do any special handling for just
|
|
// go to overdefined.
|
|
LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
|
|
ValueLatticeElement MergeWithV,
|
|
ValueLatticeElement::MergeOptions Opts) {
|
|
if (IV.mergeIn(MergeWithV, Opts)) {
|
|
pushToWorkList(IV, V);
|
|
LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
|
|
<< IV << "\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
|
|
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
|
|
return false; // This edge is already known to be executable!
|
|
|
|
if (!markBlockExecutable(Dest)) {
|
|
// If the destination is already executable, we just made an *edge*
|
|
// feasible that wasn't before. Revisit the PHI nodes in the block
|
|
// because they have potentially new operands.
|
|
LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
|
|
<< " -> " << Dest->getName() << '\n');
|
|
|
|
for (PHINode &PN : Dest->phis())
|
|
visitPHINode(PN);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
|
|
SmallVectorImpl<bool> &Succs) {
|
|
Succs.resize(TI.getNumSuccessors());
|
|
if (auto *BI = dyn_cast<BranchInst>(&TI)) {
|
|
if (BI->isUnconditional()) {
|
|
Succs[0] = true;
|
|
return;
|
|
}
|
|
|
|
ValueLatticeElement BCValue = getValueState(BI->getCondition());
|
|
ConstantInt *CI = getConstantInt(BCValue);
|
|
if (!CI) {
|
|
// Overdefined condition variables, and branches on unfoldable constant
|
|
// conditions, mean the branch could go either way.
|
|
if (!BCValue.isUnknownOrUndef())
|
|
Succs[0] = Succs[1] = true;
|
|
return;
|
|
}
|
|
|
|
// Constant condition variables mean the branch can only go a single way.
|
|
Succs[CI->isZero()] = true;
|
|
return;
|
|
}
|
|
|
|
// Unwinding instructions successors are always executable.
|
|
if (TI.isExceptionalTerminator()) {
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
|
|
if (!SI->getNumCases()) {
|
|
Succs[0] = true;
|
|
return;
|
|
}
|
|
const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
|
|
if (ConstantInt *CI = getConstantInt(SCValue)) {
|
|
Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
|
|
return;
|
|
}
|
|
|
|
// TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
|
|
// is ready.
|
|
if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
|
|
const ConstantRange &Range = SCValue.getConstantRange();
|
|
for (const auto &Case : SI->cases()) {
|
|
const APInt &CaseValue = Case.getCaseValue()->getValue();
|
|
if (Range.contains(CaseValue))
|
|
Succs[Case.getSuccessorIndex()] = true;
|
|
}
|
|
|
|
// TODO: Determine whether default case is reachable.
|
|
Succs[SI->case_default()->getSuccessorIndex()] = true;
|
|
return;
|
|
}
|
|
|
|
// Overdefined or unknown condition? All destinations are executable!
|
|
if (!SCValue.isUnknownOrUndef())
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
// In case of indirect branch and its address is a blockaddress, we mark
|
|
// the target as executable.
|
|
if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
|
|
// Casts are folded by visitCastInst.
|
|
ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
|
|
BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
|
|
if (!Addr) { // Overdefined or unknown condition?
|
|
// All destinations are executable!
|
|
if (!IBRValue.isUnknownOrUndef())
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
BasicBlock *T = Addr->getBasicBlock();
|
|
assert(Addr->getFunction() == T->getParent() &&
|
|
"Block address of a different function ?");
|
|
for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
|
|
// This is the target.
|
|
if (IBR->getDestination(i) == T) {
|
|
Succs[i] = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we didn't find our destination in the IBR successor list, then we
|
|
// have undefined behavior. Its ok to assume no successor is executable.
|
|
return;
|
|
}
|
|
|
|
// In case of callbr, we pessimistically assume that all successors are
|
|
// feasible.
|
|
if (isa<CallBrInst>(&TI)) {
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
|
|
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
|
|
}
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible.
|
|
bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
|
|
// Check if we've called markEdgeExecutable on the edge yet. (We could
|
|
// be more aggressive and try to consider edges which haven't been marked
|
|
// yet, but there isn't any need.)
|
|
return KnownFeasibleEdges.count(Edge(From, To));
|
|
}
|
|
|
|
// visit Implementations - Something changed in this instruction, either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate. This method
|
|
// makes sure to do the following actions:
|
|
//
|
|
// 1. If a phi node merges two constants in, and has conflicting value coming
|
|
// from different branches, or if the PHI node merges in an overdefined
|
|
// value, then the PHI node becomes overdefined.
|
|
// 2. If a phi node merges only constants in, and they all agree on value, the
|
|
// PHI node becomes a constant value equal to that.
|
|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
|
|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
|
|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
|
|
// 6. If a conditional branch has a value that is constant, make the selected
|
|
// destination executable
|
|
// 7. If a conditional branch has a value that is overdefined, make all
|
|
// successors executable.
|
|
void SCCPInstVisitor::visitPHINode(PHINode &PN) {
|
|
// If this PN returns a struct, just mark the result overdefined.
|
|
// TODO: We could do a lot better than this if code actually uses this.
|
|
if (PN.getType()->isStructTy())
|
|
return (void)markOverdefined(&PN);
|
|
|
|
if (getValueState(&PN).isOverdefined())
|
|
return; // Quick exit
|
|
|
|
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
|
|
// and slow us down a lot. Just mark them overdefined.
|
|
if (PN.getNumIncomingValues() > 64)
|
|
return (void)markOverdefined(&PN);
|
|
|
|
unsigned NumActiveIncoming = 0;
|
|
|
|
// Look at all of the executable operands of the PHI node. If any of them
|
|
// are overdefined, the PHI becomes overdefined as well. If they are all
|
|
// constant, and they agree with each other, the PHI becomes the identical
|
|
// constant. If they are constant and don't agree, the PHI is a constant
|
|
// range. If there are no executable operands, the PHI remains unknown.
|
|
ValueLatticeElement PhiState = getValueState(&PN);
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
|
|
continue;
|
|
|
|
ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
|
|
PhiState.mergeIn(IV);
|
|
NumActiveIncoming++;
|
|
if (PhiState.isOverdefined())
|
|
break;
|
|
}
|
|
|
|
// We allow up to 1 range extension per active incoming value and one
|
|
// additional extension. Note that we manually adjust the number of range
|
|
// extensions to match the number of active incoming values. This helps to
|
|
// limit multiple extensions caused by the same incoming value, if other
|
|
// incoming values are equal.
|
|
mergeInValue(&PN, PhiState,
|
|
ValueLatticeElement::MergeOptions().setMaxWidenSteps(
|
|
NumActiveIncoming + 1));
|
|
ValueLatticeElement &PhiStateRef = getValueState(&PN);
|
|
PhiStateRef.setNumRangeExtensions(
|
|
std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
|
|
}
|
|
|
|
void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0)
|
|
return; // ret void
|
|
|
|
Function *F = I.getParent()->getParent();
|
|
Value *ResultOp = I.getOperand(0);
|
|
|
|
// If we are tracking the return value of this function, merge it in.
|
|
if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
|
|
auto TFRVI = TrackedRetVals.find(F);
|
|
if (TFRVI != TrackedRetVals.end()) {
|
|
mergeInValue(TFRVI->second, F, getValueState(ResultOp));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle functions that return multiple values.
|
|
if (!TrackedMultipleRetVals.empty()) {
|
|
if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
|
|
if (MRVFunctionsTracked.count(F))
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
|
|
getStructValueState(ResultOp, i));
|
|
}
|
|
}
|
|
|
|
void SCCPInstVisitor::visitTerminator(Instruction &TI) {
|
|
SmallVector<bool, 16> SuccFeasible;
|
|
getFeasibleSuccessors(TI, SuccFeasible);
|
|
|
|
BasicBlock *BB = TI.getParent();
|
|
|
|
// Mark all feasible successors executable.
|
|
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
|
|
if (SuccFeasible[i])
|
|
markEdgeExecutable(BB, TI.getSuccessor(i));
|
|
}
|
|
|
|
void SCCPInstVisitor::visitCastInst(CastInst &I) {
|
|
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
|
|
// discover a concrete value later.
|
|
if (ValueState[&I].isOverdefined())
|
|
return;
|
|
|
|
ValueLatticeElement OpSt = getValueState(I.getOperand(0));
|
|
if (OpSt.isUnknownOrUndef())
|
|
return;
|
|
|
|
if (Constant *OpC = getConstant(OpSt)) {
|
|
// Fold the constant as we build.
|
|
Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
|
|
markConstant(&I, C);
|
|
} else if (I.getDestTy()->isIntegerTy() &&
|
|
I.getSrcTy()->isIntOrIntVectorTy()) {
|
|
auto &LV = getValueState(&I);
|
|
ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
|
|
|
|
Type *DestTy = I.getDestTy();
|
|
// Vectors where all elements have the same known constant range are treated
|
|
// as a single constant range in the lattice. When bitcasting such vectors,
|
|
// there is a mis-match between the width of the lattice value (single
|
|
// constant range) and the original operands (vector). Go to overdefined in
|
|
// that case.
|
|
if (I.getOpcode() == Instruction::BitCast &&
|
|
I.getOperand(0)->getType()->isVectorTy() &&
|
|
OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
|
|
return (void)markOverdefined(&I);
|
|
|
|
ConstantRange Res =
|
|
OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
|
|
mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
|
|
} else
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
|
|
// If this returns a struct, mark all elements over defined, we don't track
|
|
// structs in structs.
|
|
if (EVI.getType()->isStructTy())
|
|
return (void)markOverdefined(&EVI);
|
|
|
|
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
|
|
// discover a concrete value later.
|
|
if (ValueState[&EVI].isOverdefined())
|
|
return (void)markOverdefined(&EVI);
|
|
|
|
// If this is extracting from more than one level of struct, we don't know.
|
|
if (EVI.getNumIndices() != 1)
|
|
return (void)markOverdefined(&EVI);
|
|
|
|
Value *AggVal = EVI.getAggregateOperand();
|
|
if (AggVal->getType()->isStructTy()) {
|
|
unsigned i = *EVI.idx_begin();
|
|
ValueLatticeElement EltVal = getStructValueState(AggVal, i);
|
|
mergeInValue(getValueState(&EVI), &EVI, EltVal);
|
|
} else {
|
|
// Otherwise, must be extracting from an array.
|
|
return (void)markOverdefined(&EVI);
|
|
}
|
|
}
|
|
|
|
void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
|
|
auto *STy = dyn_cast<StructType>(IVI.getType());
|
|
if (!STy)
|
|
return (void)markOverdefined(&IVI);
|
|
|
|
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
|
|
// discover a concrete value later.
|
|
if (isOverdefined(ValueState[&IVI]))
|
|
return (void)markOverdefined(&IVI);
|
|
|
|
// If this has more than one index, we can't handle it, drive all results to
|
|
// undef.
|
|
if (IVI.getNumIndices() != 1)
|
|
return (void)markOverdefined(&IVI);
|
|
|
|
Value *Aggr = IVI.getAggregateOperand();
|
|
unsigned Idx = *IVI.idx_begin();
|
|
|
|
// Compute the result based on what we're inserting.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
// This passes through all values that aren't the inserted element.
|
|
if (i != Idx) {
|
|
ValueLatticeElement EltVal = getStructValueState(Aggr, i);
|
|
mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
|
|
continue;
|
|
}
|
|
|
|
Value *Val = IVI.getInsertedValueOperand();
|
|
if (Val->getType()->isStructTy())
|
|
// We don't track structs in structs.
|
|
markOverdefined(getStructValueState(&IVI, i), &IVI);
|
|
else {
|
|
ValueLatticeElement InVal = getValueState(Val);
|
|
mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
|
|
// If this select returns a struct, just mark the result overdefined.
|
|
// TODO: We could do a lot better than this if code actually uses this.
|
|
if (I.getType()->isStructTy())
|
|
return (void)markOverdefined(&I);
|
|
|
|
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
|
|
// discover a concrete value later.
|
|
if (ValueState[&I].isOverdefined())
|
|
return (void)markOverdefined(&I);
|
|
|
|
ValueLatticeElement CondValue = getValueState(I.getCondition());
|
|
if (CondValue.isUnknownOrUndef())
|
|
return;
|
|
|
|
if (ConstantInt *CondCB = getConstantInt(CondValue)) {
|
|
Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
|
|
mergeInValue(&I, getValueState(OpVal));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the condition is overdefined or a constant we can't evaluate.
|
|
// See if we can produce something better than overdefined based on the T/F
|
|
// value.
|
|
ValueLatticeElement TVal = getValueState(I.getTrueValue());
|
|
ValueLatticeElement FVal = getValueState(I.getFalseValue());
|
|
|
|
bool Changed = ValueState[&I].mergeIn(TVal);
|
|
Changed |= ValueState[&I].mergeIn(FVal);
|
|
if (Changed)
|
|
pushToWorkListMsg(ValueState[&I], &I);
|
|
}
|
|
|
|
// Handle Unary Operators.
|
|
void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
|
|
ValueLatticeElement V0State = getValueState(I.getOperand(0));
|
|
|
|
ValueLatticeElement &IV = ValueState[&I];
|
|
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
|
|
// discover a concrete value later.
|
|
if (isOverdefined(IV))
|
|
return (void)markOverdefined(&I);
|
|
|
|
// If something is unknown/undef, wait for it to resolve.
|
|
if (V0State.isUnknownOrUndef())
|
|
return;
|
|
|
|
if (isConstant(V0State))
|
|
if (Constant *C = ConstantFoldUnaryOpOperand(I.getOpcode(),
|
|
getConstant(V0State), DL))
|
|
return (void)markConstant(IV, &I, C);
|
|
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
// Handle Binary Operators.
|
|
void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
|
|
ValueLatticeElement V1State = getValueState(I.getOperand(0));
|
|
ValueLatticeElement V2State = getValueState(I.getOperand(1));
|
|
|
|
ValueLatticeElement &IV = ValueState[&I];
|
|
if (IV.isOverdefined())
|
|
return;
|
|
|
|
// If something is undef, wait for it to resolve.
|
|
if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
|
|
return;
|
|
|
|
if (V1State.isOverdefined() && V2State.isOverdefined())
|
|
return (void)markOverdefined(&I);
|
|
|
|
// If either of the operands is a constant, try to fold it to a constant.
|
|
// TODO: Use information from notconstant better.
|
|
if ((V1State.isConstant() || V2State.isConstant())) {
|
|
Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
|
|
Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
|
|
Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
|
|
auto *C = dyn_cast_or_null<Constant>(R);
|
|
if (C) {
|
|
// Conservatively assume that the result may be based on operands that may
|
|
// be undef. Note that we use mergeInValue to combine the constant with
|
|
// the existing lattice value for I, as different constants might be found
|
|
// after one of the operands go to overdefined, e.g. due to one operand
|
|
// being a special floating value.
|
|
ValueLatticeElement NewV;
|
|
NewV.markConstant(C, /*MayIncludeUndef=*/true);
|
|
return (void)mergeInValue(&I, NewV);
|
|
}
|
|
}
|
|
|
|
// Only use ranges for binary operators on integers.
|
|
if (!I.getType()->isIntegerTy())
|
|
return markOverdefined(&I);
|
|
|
|
// Try to simplify to a constant range.
|
|
ConstantRange A = getConstantRange(V1State, I.getType());
|
|
ConstantRange B = getConstantRange(V2State, I.getType());
|
|
ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
|
|
mergeInValue(&I, ValueLatticeElement::getRange(R));
|
|
|
|
// TODO: Currently we do not exploit special values that produce something
|
|
// better than overdefined with an overdefined operand for vector or floating
|
|
// point types, like and <4 x i32> overdefined, zeroinitializer.
|
|
}
|
|
|
|
// Handle ICmpInst instruction.
|
|
void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
|
|
// Do not cache this lookup, getValueState calls later in the function might
|
|
// invalidate the reference.
|
|
if (isOverdefined(ValueState[&I]))
|
|
return (void)markOverdefined(&I);
|
|
|
|
Value *Op1 = I.getOperand(0);
|
|
Value *Op2 = I.getOperand(1);
|
|
|
|
// For parameters, use ParamState which includes constant range info if
|
|
// available.
|
|
auto V1State = getValueState(Op1);
|
|
auto V2State = getValueState(Op2);
|
|
|
|
Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
|
|
if (C) {
|
|
ValueLatticeElement CV;
|
|
CV.markConstant(C);
|
|
mergeInValue(&I, CV);
|
|
return;
|
|
}
|
|
|
|
// If operands are still unknown, wait for it to resolve.
|
|
if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
|
|
!isConstant(ValueState[&I]))
|
|
return;
|
|
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
// Handle getelementptr instructions. If all operands are constants then we
|
|
// can turn this into a getelementptr ConstantExpr.
|
|
void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
if (isOverdefined(ValueState[&I]))
|
|
return (void)markOverdefined(&I);
|
|
|
|
SmallVector<Constant *, 8> Operands;
|
|
Operands.reserve(I.getNumOperands());
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
ValueLatticeElement State = getValueState(I.getOperand(i));
|
|
if (State.isUnknownOrUndef())
|
|
return; // Operands are not resolved yet.
|
|
|
|
if (isOverdefined(State))
|
|
return (void)markOverdefined(&I);
|
|
|
|
if (Constant *C = getConstant(State)) {
|
|
Operands.push_back(C);
|
|
continue;
|
|
}
|
|
|
|
return (void)markOverdefined(&I);
|
|
}
|
|
|
|
Constant *Ptr = Operands[0];
|
|
auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
|
|
Constant *C =
|
|
ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
|
|
markConstant(&I, C);
|
|
}
|
|
|
|
void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
|
|
// If this store is of a struct, ignore it.
|
|
if (SI.getOperand(0)->getType()->isStructTy())
|
|
return;
|
|
|
|
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
|
|
return;
|
|
|
|
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
|
|
auto I = TrackedGlobals.find(GV);
|
|
if (I == TrackedGlobals.end())
|
|
return;
|
|
|
|
// Get the value we are storing into the global, then merge it.
|
|
mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
|
|
ValueLatticeElement::MergeOptions().setCheckWiden(false));
|
|
if (I->second.isOverdefined())
|
|
TrackedGlobals.erase(I); // No need to keep tracking this!
|
|
}
|
|
|
|
static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
|
|
if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
|
|
if (I->getType()->isIntegerTy())
|
|
return ValueLatticeElement::getRange(
|
|
getConstantRangeFromMetadata(*Ranges));
|
|
if (I->hasMetadata(LLVMContext::MD_nonnull))
|
|
return ValueLatticeElement::getNot(
|
|
ConstantPointerNull::get(cast<PointerType>(I->getType())));
|
|
return ValueLatticeElement::getOverdefined();
|
|
}
|
|
|
|
// Handle load instructions. If the operand is a constant pointer to a constant
|
|
// global, we can replace the load with the loaded constant value!
|
|
void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
|
|
// If this load is of a struct or the load is volatile, just mark the result
|
|
// as overdefined.
|
|
if (I.getType()->isStructTy() || I.isVolatile())
|
|
return (void)markOverdefined(&I);
|
|
|
|
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
|
|
// discover a concrete value later.
|
|
if (ValueState[&I].isOverdefined())
|
|
return (void)markOverdefined(&I);
|
|
|
|
ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
|
|
if (PtrVal.isUnknownOrUndef())
|
|
return; // The pointer is not resolved yet!
|
|
|
|
ValueLatticeElement &IV = ValueState[&I];
|
|
|
|
if (isConstant(PtrVal)) {
|
|
Constant *Ptr = getConstant(PtrVal);
|
|
|
|
// load null is undefined.
|
|
if (isa<ConstantPointerNull>(Ptr)) {
|
|
if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
|
|
return (void)markOverdefined(IV, &I);
|
|
else
|
|
return;
|
|
}
|
|
|
|
// Transform load (constant global) into the value loaded.
|
|
if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
|
if (!TrackedGlobals.empty()) {
|
|
// If we are tracking this global, merge in the known value for it.
|
|
auto It = TrackedGlobals.find(GV);
|
|
if (It != TrackedGlobals.end()) {
|
|
mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transform load from a constant into a constant if possible.
|
|
if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
|
|
return (void)markConstant(IV, &I, C);
|
|
}
|
|
|
|
// Fall back to metadata.
|
|
mergeInValue(&I, getValueFromMetadata(&I));
|
|
}
|
|
|
|
void SCCPInstVisitor::visitCallBase(CallBase &CB) {
|
|
handleCallResult(CB);
|
|
handleCallArguments(CB);
|
|
}
|
|
|
|
void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
|
|
Function *F = CB.getCalledFunction();
|
|
|
|
// Void return and not tracking callee, just bail.
|
|
if (CB.getType()->isVoidTy())
|
|
return;
|
|
|
|
// Always mark struct return as overdefined.
|
|
if (CB.getType()->isStructTy())
|
|
return (void)markOverdefined(&CB);
|
|
|
|
// Otherwise, if we have a single return value case, and if the function is
|
|
// a declaration, maybe we can constant fold it.
|
|
if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
|
|
SmallVector<Constant *, 8> Operands;
|
|
for (const Use &A : CB.args()) {
|
|
if (A.get()->getType()->isStructTy())
|
|
return markOverdefined(&CB); // Can't handle struct args.
|
|
if (A.get()->getType()->isMetadataTy())
|
|
continue; // Carried in CB, not allowed in Operands.
|
|
ValueLatticeElement State = getValueState(A);
|
|
|
|
if (State.isUnknownOrUndef())
|
|
return; // Operands are not resolved yet.
|
|
if (isOverdefined(State))
|
|
return (void)markOverdefined(&CB);
|
|
assert(isConstant(State) && "Unknown state!");
|
|
Operands.push_back(getConstant(State));
|
|
}
|
|
|
|
if (isOverdefined(getValueState(&CB)))
|
|
return (void)markOverdefined(&CB);
|
|
|
|
// If we can constant fold this, mark the result of the call as a
|
|
// constant.
|
|
if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
|
|
return (void)markConstant(&CB, C);
|
|
}
|
|
|
|
// Fall back to metadata.
|
|
mergeInValue(&CB, getValueFromMetadata(&CB));
|
|
}
|
|
|
|
void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
|
|
Function *F = CB.getCalledFunction();
|
|
// If this is a local function that doesn't have its address taken, mark its
|
|
// entry block executable and merge in the actual arguments to the call into
|
|
// the formal arguments of the function.
|
|
if (!TrackingIncomingArguments.empty() &&
|
|
TrackingIncomingArguments.count(F)) {
|
|
markBlockExecutable(&F->front());
|
|
|
|
// Propagate information from this call site into the callee.
|
|
auto CAI = CB.arg_begin();
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
|
|
++AI, ++CAI) {
|
|
// If this argument is byval, and if the function is not readonly, there
|
|
// will be an implicit copy formed of the input aggregate.
|
|
if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
|
|
markOverdefined(&*AI);
|
|
continue;
|
|
}
|
|
|
|
if (auto *STy = dyn_cast<StructType>(AI->getType())) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
ValueLatticeElement CallArg = getStructValueState(*CAI, i);
|
|
mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
|
|
getMaxWidenStepsOpts());
|
|
}
|
|
} else
|
|
mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
|
|
}
|
|
}
|
|
}
|
|
|
|
void SCCPInstVisitor::handleCallResult(CallBase &CB) {
|
|
Function *F = CB.getCalledFunction();
|
|
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
|
|
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
|
|
if (ValueState[&CB].isOverdefined())
|
|
return;
|
|
|
|
Value *CopyOf = CB.getOperand(0);
|
|
ValueLatticeElement CopyOfVal = getValueState(CopyOf);
|
|
const auto *PI = getPredicateInfoFor(&CB);
|
|
assert(PI && "Missing predicate info for ssa.copy");
|
|
|
|
const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
|
|
if (!Constraint) {
|
|
mergeInValue(ValueState[&CB], &CB, CopyOfVal);
|
|
return;
|
|
}
|
|
|
|
CmpInst::Predicate Pred = Constraint->Predicate;
|
|
Value *OtherOp = Constraint->OtherOp;
|
|
|
|
// Wait until OtherOp is resolved.
|
|
if (getValueState(OtherOp).isUnknown()) {
|
|
addAdditionalUser(OtherOp, &CB);
|
|
return;
|
|
}
|
|
|
|
ValueLatticeElement CondVal = getValueState(OtherOp);
|
|
ValueLatticeElement &IV = ValueState[&CB];
|
|
if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
|
|
auto ImposedCR =
|
|
ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
|
|
|
|
// Get the range imposed by the condition.
|
|
if (CondVal.isConstantRange())
|
|
ImposedCR = ConstantRange::makeAllowedICmpRegion(
|
|
Pred, CondVal.getConstantRange());
|
|
|
|
// Combine range info for the original value with the new range from the
|
|
// condition.
|
|
auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
|
|
auto NewCR = ImposedCR.intersectWith(CopyOfCR);
|
|
// If the existing information is != x, do not use the information from
|
|
// a chained predicate, as the != x information is more likely to be
|
|
// helpful in practice.
|
|
if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
|
|
NewCR = CopyOfCR;
|
|
|
|
// The new range is based on a branch condition. That guarantees that
|
|
// neither of the compare operands can be undef in the branch targets,
|
|
// unless we have conditions that are always true/false (e.g. icmp ule
|
|
// i32, %a, i32_max). For the latter overdefined/empty range will be
|
|
// inferred, but the branch will get folded accordingly anyways.
|
|
addAdditionalUser(OtherOp, &CB);
|
|
mergeInValue(
|
|
IV, &CB,
|
|
ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
|
|
return;
|
|
} else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
|
|
// For non-integer values or integer constant expressions, only
|
|
// propagate equal constants.
|
|
addAdditionalUser(OtherOp, &CB);
|
|
mergeInValue(IV, &CB, CondVal);
|
|
return;
|
|
} else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
|
|
// Propagate inequalities.
|
|
addAdditionalUser(OtherOp, &CB);
|
|
mergeInValue(IV, &CB,
|
|
ValueLatticeElement::getNot(CondVal.getConstant()));
|
|
return;
|
|
}
|
|
|
|
return (void)mergeInValue(IV, &CB, CopyOfVal);
|
|
}
|
|
|
|
if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
|
|
// Compute result range for intrinsics supported by ConstantRange.
|
|
// Do this even if we don't know a range for all operands, as we may
|
|
// still know something about the result range, e.g. of abs(x).
|
|
SmallVector<ConstantRange, 2> OpRanges;
|
|
for (Value *Op : II->args()) {
|
|
const ValueLatticeElement &State = getValueState(Op);
|
|
OpRanges.push_back(getConstantRange(State, Op->getType()));
|
|
}
|
|
|
|
ConstantRange Result =
|
|
ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
|
|
return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
|
|
}
|
|
}
|
|
|
|
// The common case is that we aren't tracking the callee, either because we
|
|
// are not doing interprocedural analysis or the callee is indirect, or is
|
|
// external. Handle these cases first.
|
|
if (!F || F->isDeclaration())
|
|
return handleCallOverdefined(CB);
|
|
|
|
// If this is a single/zero retval case, see if we're tracking the function.
|
|
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
|
|
if (!MRVFunctionsTracked.count(F))
|
|
return handleCallOverdefined(CB); // Not tracking this callee.
|
|
|
|
// If we are tracking this callee, propagate the result of the function
|
|
// into this call site.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
mergeInValue(getStructValueState(&CB, i), &CB,
|
|
TrackedMultipleRetVals[std::make_pair(F, i)],
|
|
getMaxWidenStepsOpts());
|
|
} else {
|
|
auto TFRVI = TrackedRetVals.find(F);
|
|
if (TFRVI == TrackedRetVals.end())
|
|
return handleCallOverdefined(CB); // Not tracking this callee.
|
|
|
|
// If so, propagate the return value of the callee into this call result.
|
|
mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
|
|
}
|
|
}
|
|
|
|
void SCCPInstVisitor::solve() {
|
|
// Process the work lists until they are empty!
|
|
while (!BBWorkList.empty() || !InstWorkList.empty() ||
|
|
!OverdefinedInstWorkList.empty()) {
|
|
// Process the overdefined instruction's work list first, which drives other
|
|
// things to overdefined more quickly.
|
|
while (!OverdefinedInstWorkList.empty()) {
|
|
Value *I = OverdefinedInstWorkList.pop_back_val();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
|
|
|
|
// "I" got into the work list because it either made the transition from
|
|
// bottom to constant, or to overdefined.
|
|
//
|
|
// Anything on this worklist that is overdefined need not be visited
|
|
// since all of its users will have already been marked as overdefined
|
|
// Update all of the users of this instruction's value.
|
|
//
|
|
markUsersAsChanged(I);
|
|
}
|
|
|
|
// Process the instruction work list.
|
|
while (!InstWorkList.empty()) {
|
|
Value *I = InstWorkList.pop_back_val();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
|
|
|
|
// "I" got into the work list because it made the transition from undef to
|
|
// constant.
|
|
//
|
|
// Anything on this worklist that is overdefined need not be visited
|
|
// since all of its users will have already been marked as overdefined.
|
|
// Update all of the users of this instruction's value.
|
|
//
|
|
if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
|
|
markUsersAsChanged(I);
|
|
}
|
|
|
|
// Process the basic block work list.
|
|
while (!BBWorkList.empty()) {
|
|
BasicBlock *BB = BBWorkList.pop_back_val();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
|
|
|
|
// Notify all instructions in this basic block that they are newly
|
|
// executable.
|
|
visit(BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// While solving the dataflow for a function, we don't compute a result for
|
|
/// operations with an undef operand, to allow undef to be lowered to a
|
|
/// constant later. For example, constant folding of "zext i8 undef to i16"
|
|
/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
|
|
/// zext result would become "i16 1" and would result into an overdefined
|
|
/// lattice value once merged with the previous result. Not computing the
|
|
/// result of the zext (treating undef the same as unknown) allows us to handle
|
|
/// a later undef->constant lowering more optimally.
|
|
///
|
|
/// However, if the operand remains undef when the solver returns, we do need
|
|
/// to assign some result to the instruction (otherwise we would treat it as
|
|
/// unreachable). For simplicity, we mark any instructions that are still
|
|
/// unknown as overdefined.
|
|
bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
|
|
bool MadeChange = false;
|
|
for (BasicBlock &BB : F) {
|
|
if (!BBExecutable.count(&BB))
|
|
continue;
|
|
|
|
for (Instruction &I : BB) {
|
|
// Look for instructions which produce undef values.
|
|
if (I.getType()->isVoidTy())
|
|
continue;
|
|
|
|
if (auto *STy = dyn_cast<StructType>(I.getType())) {
|
|
// Only a few things that can be structs matter for undef.
|
|
|
|
// Tracked calls must never be marked overdefined in resolvedUndefsIn.
|
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
|
if (Function *F = CB->getCalledFunction())
|
|
if (MRVFunctionsTracked.count(F))
|
|
continue;
|
|
|
|
// extractvalue and insertvalue don't need to be marked; they are
|
|
// tracked as precisely as their operands.
|
|
if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
|
|
continue;
|
|
// Send the results of everything else to overdefined. We could be
|
|
// more precise than this but it isn't worth bothering.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
ValueLatticeElement &LV = getStructValueState(&I, i);
|
|
if (LV.isUnknown()) {
|
|
markOverdefined(LV, &I);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
ValueLatticeElement &LV = getValueState(&I);
|
|
if (!LV.isUnknown())
|
|
continue;
|
|
|
|
// There are two reasons a call can have an undef result
|
|
// 1. It could be tracked.
|
|
// 2. It could be constant-foldable.
|
|
// Because of the way we solve return values, tracked calls must
|
|
// never be marked overdefined in resolvedUndefsIn.
|
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
|
if (Function *F = CB->getCalledFunction())
|
|
if (TrackedRetVals.count(F))
|
|
continue;
|
|
|
|
if (isa<LoadInst>(I)) {
|
|
// A load here means one of two things: a load of undef from a global,
|
|
// a load from an unknown pointer. Either way, having it return undef
|
|
// is okay.
|
|
continue;
|
|
}
|
|
|
|
markOverdefined(&I);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// SCCPSolver implementations
|
|
//
|
|
SCCPSolver::SCCPSolver(
|
|
const DataLayout &DL,
|
|
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
|
|
LLVMContext &Ctx)
|
|
: Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
|
|
|
|
SCCPSolver::~SCCPSolver() = default;
|
|
|
|
void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
|
|
return Visitor->addAnalysis(F, std::move(A));
|
|
}
|
|
|
|
bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
|
|
return Visitor->markBlockExecutable(BB);
|
|
}
|
|
|
|
const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
|
|
return Visitor->getPredicateInfoFor(I);
|
|
}
|
|
|
|
const LoopInfo &SCCPSolver::getLoopInfo(Function &F) {
|
|
return Visitor->getLoopInfo(F);
|
|
}
|
|
|
|
DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
|
|
|
|
void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
|
|
Visitor->trackValueOfGlobalVariable(GV);
|
|
}
|
|
|
|
void SCCPSolver::addTrackedFunction(Function *F) {
|
|
Visitor->addTrackedFunction(F);
|
|
}
|
|
|
|
void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
|
|
Visitor->addToMustPreserveReturnsInFunctions(F);
|
|
}
|
|
|
|
bool SCCPSolver::mustPreserveReturn(Function *F) {
|
|
return Visitor->mustPreserveReturn(F);
|
|
}
|
|
|
|
void SCCPSolver::addArgumentTrackedFunction(Function *F) {
|
|
Visitor->addArgumentTrackedFunction(F);
|
|
}
|
|
|
|
bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
|
|
return Visitor->isArgumentTrackedFunction(F);
|
|
}
|
|
|
|
void SCCPSolver::solve() { Visitor->solve(); }
|
|
|
|
bool SCCPSolver::resolvedUndefsIn(Function &F) {
|
|
return Visitor->resolvedUndefsIn(F);
|
|
}
|
|
|
|
bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
|
|
return Visitor->isBlockExecutable(BB);
|
|
}
|
|
|
|
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
|
|
return Visitor->isEdgeFeasible(From, To);
|
|
}
|
|
|
|
std::vector<ValueLatticeElement>
|
|
SCCPSolver::getStructLatticeValueFor(Value *V) const {
|
|
return Visitor->getStructLatticeValueFor(V);
|
|
}
|
|
|
|
void SCCPSolver::removeLatticeValueFor(Value *V) {
|
|
return Visitor->removeLatticeValueFor(V);
|
|
}
|
|
|
|
const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
|
|
return Visitor->getLatticeValueFor(V);
|
|
}
|
|
|
|
const MapVector<Function *, ValueLatticeElement> &
|
|
SCCPSolver::getTrackedRetVals() {
|
|
return Visitor->getTrackedRetVals();
|
|
}
|
|
|
|
const DenseMap<GlobalVariable *, ValueLatticeElement> &
|
|
SCCPSolver::getTrackedGlobals() {
|
|
return Visitor->getTrackedGlobals();
|
|
}
|
|
|
|
const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
|
|
return Visitor->getMRVFunctionsTracked();
|
|
}
|
|
|
|
void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
|
|
|
|
bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
|
|
return Visitor->isStructLatticeConstant(F, STy);
|
|
}
|
|
|
|
Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
|
|
return Visitor->getConstant(LV);
|
|
}
|
|
|
|
SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
|
|
return Visitor->getArgumentTrackedFunctions();
|
|
}
|
|
|
|
void SCCPSolver::markArgInFuncSpecialization(
|
|
Function *F, const SmallVectorImpl<ArgInfo> &Args) {
|
|
Visitor->markArgInFuncSpecialization(F, Args);
|
|
}
|
|
|
|
void SCCPSolver::markFunctionUnreachable(Function *F) {
|
|
Visitor->markFunctionUnreachable(F);
|
|
}
|
|
|
|
void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
|
|
|
|
void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
|