llvm-project/llvm/lib/DebugInfo/DWARF/DWARFDebugFrame.cpp

1258 lines
45 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <optional>
using namespace llvm;
using namespace dwarf;
static void printRegister(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
unsigned RegNum) {
if (MRI) {
if (std::optional<unsigned> LLVMRegNum = MRI->getLLVMRegNum(RegNum, IsEH)) {
if (const char *RegName = MRI->getName(*LLVMRegNum)) {
OS << RegName;
return;
}
}
}
OS << "reg" << RegNum;
}
UnwindLocation UnwindLocation::createUnspecified() { return {Unspecified}; }
UnwindLocation UnwindLocation::createUndefined() { return {Undefined}; }
UnwindLocation UnwindLocation::createSame() { return {Same}; }
UnwindLocation UnwindLocation::createIsConstant(int32_t Value) {
return {Constant, InvalidRegisterNumber, Value, std::nullopt, false};
}
UnwindLocation UnwindLocation::createIsCFAPlusOffset(int32_t Offset) {
return {CFAPlusOffset, InvalidRegisterNumber, Offset, std::nullopt, false};
}
UnwindLocation UnwindLocation::createAtCFAPlusOffset(int32_t Offset) {
return {CFAPlusOffset, InvalidRegisterNumber, Offset, std::nullopt, true};
}
UnwindLocation
UnwindLocation::createIsRegisterPlusOffset(uint32_t RegNum, int32_t Offset,
std::optional<uint32_t> AddrSpace) {
return {RegPlusOffset, RegNum, Offset, AddrSpace, false};
}
UnwindLocation
UnwindLocation::createAtRegisterPlusOffset(uint32_t RegNum, int32_t Offset,
std::optional<uint32_t> AddrSpace) {
return {RegPlusOffset, RegNum, Offset, AddrSpace, true};
}
UnwindLocation UnwindLocation::createIsDWARFExpression(DWARFExpression Expr) {
return {Expr, false};
}
UnwindLocation UnwindLocation::createAtDWARFExpression(DWARFExpression Expr) {
return {Expr, true};
}
void UnwindLocation::dump(raw_ostream &OS, const MCRegisterInfo *MRI,
bool IsEH) const {
if (Dereference)
OS << '[';
switch (Kind) {
case Unspecified:
OS << "unspecified";
break;
case Undefined:
OS << "undefined";
break;
case Same:
OS << "same";
break;
case CFAPlusOffset:
OS << "CFA";
if (Offset == 0)
break;
if (Offset > 0)
OS << "+";
OS << Offset;
break;
case RegPlusOffset:
printRegister(OS, MRI, IsEH, RegNum);
if (Offset == 0 && !AddrSpace)
break;
if (Offset >= 0)
OS << "+";
OS << Offset;
if (AddrSpace)
OS << " in addrspace" << *AddrSpace;
break;
case DWARFExpr:
Expr->print(OS, DIDumpOptions(), MRI, nullptr, IsEH);
break;
case Constant:
OS << Offset;
break;
}
if (Dereference)
OS << ']';
}
raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS,
const UnwindLocation &UL) {
UL.dump(OS, nullptr, false);
return OS;
}
bool UnwindLocation::operator==(const UnwindLocation &RHS) const {
if (Kind != RHS.Kind)
return false;
switch (Kind) {
case Unspecified:
case Undefined:
case Same:
return true;
case CFAPlusOffset:
return Offset == RHS.Offset && Dereference == RHS.Dereference;
case RegPlusOffset:
return RegNum == RHS.RegNum && Offset == RHS.Offset &&
Dereference == RHS.Dereference;
case DWARFExpr:
return *Expr == *RHS.Expr && Dereference == RHS.Dereference;
case Constant:
return Offset == RHS.Offset;
}
return false;
}
void RegisterLocations::dump(raw_ostream &OS, const MCRegisterInfo *MRI,
bool IsEH) const {
bool First = true;
for (const auto &RegLocPair : Locations) {
if (First)
First = false;
else
OS << ", ";
printRegister(OS, MRI, IsEH, RegLocPair.first);
OS << '=';
RegLocPair.second.dump(OS, MRI, IsEH);
}
}
raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS,
const RegisterLocations &RL) {
RL.dump(OS, nullptr, false);
return OS;
}
void UnwindRow::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
unsigned IndentLevel) const {
OS.indent(2 * IndentLevel);
if (hasAddress())
OS << format("0x%" PRIx64 ": ", *Address);
OS << "CFA=";
CFAValue.dump(OS, MRI, IsEH);
if (RegLocs.hasLocations()) {
OS << ": ";
RegLocs.dump(OS, MRI, IsEH);
}
OS << "\n";
}
raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindRow &Row) {
Row.dump(OS, nullptr, false, 0);
return OS;
}
void UnwindTable::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
unsigned IndentLevel) const {
for (const UnwindRow &Row : Rows)
Row.dump(OS, MRI, IsEH, IndentLevel);
}
raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindTable &Rows) {
Rows.dump(OS, nullptr, false, 0);
return OS;
}
Expected<UnwindTable> UnwindTable::create(const FDE *Fde) {
const CIE *Cie = Fde->getLinkedCIE();
if (Cie == nullptr)
return createStringError(errc::invalid_argument,
"unable to get CIE for FDE at offset 0x%" PRIx64,
Fde->getOffset());
// Rows will be empty if there are no CFI instructions.
if (Cie->cfis().empty() && Fde->cfis().empty())
return UnwindTable();
UnwindTable UT;
UnwindRow Row;
Row.setAddress(Fde->getInitialLocation());
UT.EndAddress = Fde->getInitialLocation() + Fde->getAddressRange();
if (Error CieError = UT.parseRows(Cie->cfis(), Row, nullptr))
return std::move(CieError);
// We need to save the initial locations of registers from the CIE parsing
// in case we run into DW_CFA_restore or DW_CFA_restore_extended opcodes.
const RegisterLocations InitialLocs = Row.getRegisterLocations();
if (Error FdeError = UT.parseRows(Fde->cfis(), Row, &InitialLocs))
return std::move(FdeError);
// May be all the CFI instructions were DW_CFA_nop amd Row becomes empty.
// Do not add that to the unwind table.
if (Row.getRegisterLocations().hasLocations() ||
Row.getCFAValue().getLocation() != UnwindLocation::Unspecified)
UT.Rows.push_back(Row);
return UT;
}
Expected<UnwindTable> UnwindTable::create(const CIE *Cie) {
// Rows will be empty if there are no CFI instructions.
if (Cie->cfis().empty())
return UnwindTable();
UnwindTable UT;
UnwindRow Row;
if (Error CieError = UT.parseRows(Cie->cfis(), Row, nullptr))
return std::move(CieError);
// May be all the CFI instructions were DW_CFA_nop amd Row becomes empty.
// Do not add that to the unwind table.
if (Row.getRegisterLocations().hasLocations() ||
Row.getCFAValue().getLocation() != UnwindLocation::Unspecified)
UT.Rows.push_back(Row);
return UT;
}
// See DWARF standard v3, section 7.23
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
Error CFIProgram::parse(DWARFDataExtractor Data, uint64_t *Offset,
uint64_t EndOffset) {
DataExtractor::Cursor C(*Offset);
while (C && C.tell() < EndOffset) {
uint8_t Opcode = Data.getRelocatedValue(C, 1);
if (!C)
break;
// Some instructions have a primary opcode encoded in the top bits.
if (uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) {
// If it's a primary opcode, the first operand is encoded in the bottom
// bits of the opcode itself.
uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
switch (Primary) {
case DW_CFA_advance_loc:
case DW_CFA_restore:
addInstruction(Primary, Op1);
break;
case DW_CFA_offset:
addInstruction(Primary, Op1, Data.getULEB128(C));
break;
default:
llvm_unreachable("invalid primary CFI opcode");
}
continue;
}
// Extended opcode - its value is Opcode itself.
switch (Opcode) {
default:
return createStringError(errc::illegal_byte_sequence,
"invalid extended CFI opcode 0x%" PRIx8, Opcode);
case DW_CFA_nop:
case DW_CFA_remember_state:
case DW_CFA_restore_state:
case DW_CFA_GNU_window_save:
// No operands
addInstruction(Opcode);
break;
case DW_CFA_set_loc:
// Operands: Address
addInstruction(Opcode, Data.getRelocatedAddress(C));
break;
case DW_CFA_advance_loc1:
// Operands: 1-byte delta
addInstruction(Opcode, Data.getRelocatedValue(C, 1));
break;
case DW_CFA_advance_loc2:
// Operands: 2-byte delta
addInstruction(Opcode, Data.getRelocatedValue(C, 2));
break;
case DW_CFA_advance_loc4:
// Operands: 4-byte delta
addInstruction(Opcode, Data.getRelocatedValue(C, 4));
break;
case DW_CFA_restore_extended:
case DW_CFA_undefined:
case DW_CFA_same_value:
case DW_CFA_def_cfa_register:
case DW_CFA_def_cfa_offset:
case DW_CFA_GNU_args_size:
// Operands: ULEB128
addInstruction(Opcode, Data.getULEB128(C));
break;
case DW_CFA_def_cfa_offset_sf:
// Operands: SLEB128
addInstruction(Opcode, Data.getSLEB128(C));
break;
case DW_CFA_LLVM_def_aspace_cfa:
case DW_CFA_LLVM_def_aspace_cfa_sf: {
auto RegNum = Data.getULEB128(C);
auto CfaOffset = Opcode == DW_CFA_LLVM_def_aspace_cfa
? Data.getULEB128(C)
: Data.getSLEB128(C);
auto AddressSpace = Data.getULEB128(C);
addInstruction(Opcode, RegNum, CfaOffset, AddressSpace);
break;
}
case DW_CFA_offset_extended:
case DW_CFA_register:
case DW_CFA_def_cfa:
case DW_CFA_val_offset: {
// Operands: ULEB128, ULEB128
// Note: We can not embed getULEB128 directly into function
// argument list. getULEB128 changes Offset and order of evaluation
// for arguments is unspecified.
uint64_t op1 = Data.getULEB128(C);
uint64_t op2 = Data.getULEB128(C);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_offset_extended_sf:
case DW_CFA_def_cfa_sf:
case DW_CFA_val_offset_sf: {
// Operands: ULEB128, SLEB128
// Note: see comment for the previous case
uint64_t op1 = Data.getULEB128(C);
uint64_t op2 = (uint64_t)Data.getSLEB128(C);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_def_cfa_expression: {
uint64_t ExprLength = Data.getULEB128(C);
addInstruction(Opcode, 0);
StringRef Expression = Data.getBytes(C, ExprLength);
DataExtractor Extractor(Expression, Data.isLittleEndian(),
Data.getAddressSize());
// Note. We do not pass the DWARF format to DWARFExpression, because
// DW_OP_call_ref, the only operation which depends on the format, is
// prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
Instructions.back().Expression =
DWARFExpression(Extractor, Data.getAddressSize());
break;
}
case DW_CFA_expression:
case DW_CFA_val_expression: {
uint64_t RegNum = Data.getULEB128(C);
addInstruction(Opcode, RegNum, 0);
uint64_t BlockLength = Data.getULEB128(C);
StringRef Expression = Data.getBytes(C, BlockLength);
DataExtractor Extractor(Expression, Data.isLittleEndian(),
Data.getAddressSize());
// Note. We do not pass the DWARF format to DWARFExpression, because
// DW_OP_call_ref, the only operation which depends on the format, is
// prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
Instructions.back().Expression =
DWARFExpression(Extractor, Data.getAddressSize());
break;
}
}
}
*Offset = C.tell();
return C.takeError();
}
StringRef CFIProgram::callFrameString(unsigned Opcode) const {
return dwarf::CallFrameString(Opcode, Arch);
}
const char *CFIProgram::operandTypeString(CFIProgram::OperandType OT) {
#define ENUM_TO_CSTR(e) \
case e: \
return #e;
switch (OT) {
ENUM_TO_CSTR(OT_Unset);
ENUM_TO_CSTR(OT_None);
ENUM_TO_CSTR(OT_Address);
ENUM_TO_CSTR(OT_Offset);
ENUM_TO_CSTR(OT_FactoredCodeOffset);
ENUM_TO_CSTR(OT_SignedFactDataOffset);
ENUM_TO_CSTR(OT_UnsignedFactDataOffset);
ENUM_TO_CSTR(OT_Register);
ENUM_TO_CSTR(OT_AddressSpace);
ENUM_TO_CSTR(OT_Expression);
}
return "<unknown CFIProgram::OperandType>";
}
llvm::Expected<uint64_t>
CFIProgram::Instruction::getOperandAsUnsigned(const CFIProgram &CFIP,
uint32_t OperandIdx) const {
if (OperandIdx >= MaxOperands)
return createStringError(errc::invalid_argument,
"operand index %" PRIu32 " is not valid",
OperandIdx);
OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx];
uint64_t Operand = Ops[OperandIdx];
switch (Type) {
case OT_Unset:
case OT_None:
case OT_Expression:
return createStringError(errc::invalid_argument,
"op[%" PRIu32 "] has type %s which has no value",
OperandIdx, CFIProgram::operandTypeString(Type));
case OT_Offset:
case OT_SignedFactDataOffset:
case OT_UnsignedFactDataOffset:
return createStringError(
errc::invalid_argument,
"op[%" PRIu32 "] has OperandType OT_Offset which produces a signed "
"result, call getOperandAsSigned instead",
OperandIdx);
case OT_Address:
case OT_Register:
case OT_AddressSpace:
return Operand;
case OT_FactoredCodeOffset: {
const uint64_t CodeAlignmentFactor = CFIP.codeAlign();
if (CodeAlignmentFactor == 0)
return createStringError(
errc::invalid_argument,
"op[%" PRIu32 "] has type OT_FactoredCodeOffset but code alignment "
"is zero",
OperandIdx);
return Operand * CodeAlignmentFactor;
}
}
llvm_unreachable("invalid operand type");
}
llvm::Expected<int64_t>
CFIProgram::Instruction::getOperandAsSigned(const CFIProgram &CFIP,
uint32_t OperandIdx) const {
if (OperandIdx >= MaxOperands)
return createStringError(errc::invalid_argument,
"operand index %" PRIu32 " is not valid",
OperandIdx);
OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx];
uint64_t Operand = Ops[OperandIdx];
switch (Type) {
case OT_Unset:
case OT_None:
case OT_Expression:
return createStringError(errc::invalid_argument,
"op[%" PRIu32 "] has type %s which has no value",
OperandIdx, CFIProgram::operandTypeString(Type));
case OT_Address:
case OT_Register:
case OT_AddressSpace:
return createStringError(
errc::invalid_argument,
"op[%" PRIu32 "] has OperandType %s which produces an unsigned result, "
"call getOperandAsUnsigned instead",
OperandIdx, CFIProgram::operandTypeString(Type));
case OT_Offset:
return (int64_t)Operand;
case OT_FactoredCodeOffset:
case OT_SignedFactDataOffset: {
const int64_t DataAlignmentFactor = CFIP.dataAlign();
if (DataAlignmentFactor == 0)
return createStringError(errc::invalid_argument,
"op[%" PRIu32 "] has type %s but data "
"alignment is zero",
OperandIdx, CFIProgram::operandTypeString(Type));
return int64_t(Operand) * DataAlignmentFactor;
}
case OT_UnsignedFactDataOffset: {
const int64_t DataAlignmentFactor = CFIP.dataAlign();
if (DataAlignmentFactor == 0)
return createStringError(errc::invalid_argument,
"op[%" PRIu32
"] has type OT_UnsignedFactDataOffset but data "
"alignment is zero",
OperandIdx);
return Operand * DataAlignmentFactor;
}
}
llvm_unreachable("invalid operand type");
}
Error UnwindTable::parseRows(const CFIProgram &CFIP, UnwindRow &Row,
const RegisterLocations *InitialLocs) {
std::vector<RegisterLocations> RegisterStates;
for (const CFIProgram::Instruction &Inst : CFIP) {
switch (Inst.Opcode) {
case dwarf::DW_CFA_set_loc: {
// The DW_CFA_set_loc instruction takes a single operand that
// represents a target address. The required action is to create a new
// table row using the specified address as the location. All other
// values in the new row are initially identical to the current row.
// The new location value is always greater than the current one. If
// the segment_size field of this FDE's CIE is non- zero, the initial
// location is preceded by a segment selector of the given length
llvm::Expected<uint64_t> NewAddress = Inst.getOperandAsUnsigned(CFIP, 0);
if (!NewAddress)
return NewAddress.takeError();
if (*NewAddress <= Row.getAddress())
return createStringError(
errc::invalid_argument,
"%s with adrress 0x%" PRIx64 " which must be greater than the "
"current row address 0x%" PRIx64,
CFIP.callFrameString(Inst.Opcode).str().c_str(), *NewAddress,
Row.getAddress());
Rows.push_back(Row);
Row.setAddress(*NewAddress);
break;
}
case dwarf::DW_CFA_advance_loc:
case dwarf::DW_CFA_advance_loc1:
case dwarf::DW_CFA_advance_loc2:
case dwarf::DW_CFA_advance_loc4: {
// The DW_CFA_advance instruction takes a single operand that
// represents a constant delta. The required action is to create a new
// table row with a location value that is computed by taking the
// current entrys location value and adding the value of delta *
// code_alignment_factor. All other values in the new row are initially
// identical to the current row.
Rows.push_back(Row);
llvm::Expected<uint64_t> Offset = Inst.getOperandAsUnsigned(CFIP, 0);
if (!Offset)
return Offset.takeError();
Row.slideAddress(*Offset);
break;
}
case dwarf::DW_CFA_restore:
case dwarf::DW_CFA_restore_extended: {
// The DW_CFA_restore instruction takes a single operand (encoded with
// the opcode) that represents a register number. The required action
// is to change the rule for the indicated register to the rule
// assigned it by the initial_instructions in the CIE.
if (InitialLocs == nullptr)
return createStringError(
errc::invalid_argument, "%s encountered while parsing a CIE",
CFIP.callFrameString(Inst.Opcode).str().c_str());
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
if (std::optional<UnwindLocation> O =
InitialLocs->getRegisterLocation(*RegNum))
Row.getRegisterLocations().setRegisterLocation(*RegNum, *O);
else
Row.getRegisterLocations().removeRegisterLocation(*RegNum);
break;
}
case dwarf::DW_CFA_offset:
case dwarf::DW_CFA_offset_extended:
case dwarf::DW_CFA_offset_extended_sf: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1);
if (!Offset)
return Offset.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createAtCFAPlusOffset(*Offset));
break;
}
case dwarf::DW_CFA_nop:
break;
case dwarf::DW_CFA_remember_state:
RegisterStates.push_back(Row.getRegisterLocations());
break;
case dwarf::DW_CFA_restore_state:
if (RegisterStates.empty())
return createStringError(errc::invalid_argument,
"DW_CFA_restore_state without a matching "
"previous DW_CFA_remember_state");
Row.getRegisterLocations() = RegisterStates.back();
RegisterStates.pop_back();
break;
case dwarf::DW_CFA_GNU_window_save:
switch (CFIP.triple()) {
case Triple::aarch64:
case Triple::aarch64_be:
case Triple::aarch64_32: {
// DW_CFA_GNU_window_save is used for different things on different
// architectures. For aarch64 it is known as
// DW_CFA_AARCH64_negate_ra_state. The action is to toggle the
// value of the return address state between 1 and 0. If there is
// no rule for the AARCH64_DWARF_PAUTH_RA_STATE register, then it
// should be initially set to 1.
constexpr uint32_t AArch64DWARFPAuthRaState = 34;
auto LRLoc = Row.getRegisterLocations().getRegisterLocation(
AArch64DWARFPAuthRaState);
if (LRLoc) {
if (LRLoc->getLocation() == UnwindLocation::Constant) {
// Toggle the constant value from 0 to 1 or 1 to 0.
LRLoc->setConstant(LRLoc->getConstant() ^ 1);
} else {
return createStringError(
errc::invalid_argument,
"%s encountered when existing rule for this register is not "
"a constant",
CFIP.callFrameString(Inst.Opcode).str().c_str());
}
} else {
Row.getRegisterLocations().setRegisterLocation(
AArch64DWARFPAuthRaState, UnwindLocation::createIsConstant(1));
}
break;
}
case Triple::sparc:
case Triple::sparcv9:
case Triple::sparcel:
for (uint32_t RegNum = 16; RegNum < 32; ++RegNum) {
Row.getRegisterLocations().setRegisterLocation(
RegNum, UnwindLocation::createAtCFAPlusOffset((RegNum - 16) * 8));
}
break;
default: {
return createStringError(
errc::not_supported,
"DW_CFA opcode %#x is not supported for architecture %s",
Inst.Opcode, Triple::getArchTypeName(CFIP.triple()).str().c_str());
break;
}
}
break;
case dwarf::DW_CFA_undefined: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createUndefined());
break;
}
case dwarf::DW_CFA_same_value: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createSame());
break;
}
case dwarf::DW_CFA_GNU_args_size:
break;
case dwarf::DW_CFA_register: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
llvm::Expected<uint64_t> NewRegNum = Inst.getOperandAsUnsigned(CFIP, 1);
if (!NewRegNum)
return NewRegNum.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createIsRegisterPlusOffset(*NewRegNum, 0));
break;
}
case dwarf::DW_CFA_val_offset:
case dwarf::DW_CFA_val_offset_sf: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1);
if (!Offset)
return Offset.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createIsCFAPlusOffset(*Offset));
break;
}
case dwarf::DW_CFA_expression: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createAtDWARFExpression(*Inst.Expression));
break;
}
case dwarf::DW_CFA_val_expression: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
Row.getRegisterLocations().setRegisterLocation(
*RegNum, UnwindLocation::createIsDWARFExpression(*Inst.Expression));
break;
}
case dwarf::DW_CFA_def_cfa_register: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
if (Row.getCFAValue().getLocation() != UnwindLocation::RegPlusOffset)
Row.getCFAValue() =
UnwindLocation::createIsRegisterPlusOffset(*RegNum, 0);
else
Row.getCFAValue().setRegister(*RegNum);
break;
}
case dwarf::DW_CFA_def_cfa_offset:
case dwarf::DW_CFA_def_cfa_offset_sf: {
llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 0);
if (!Offset)
return Offset.takeError();
if (Row.getCFAValue().getLocation() != UnwindLocation::RegPlusOffset) {
return createStringError(
errc::invalid_argument,
"%s found when CFA rule was not RegPlusOffset",
CFIP.callFrameString(Inst.Opcode).str().c_str());
}
Row.getCFAValue().setOffset(*Offset);
break;
}
case dwarf::DW_CFA_def_cfa:
case dwarf::DW_CFA_def_cfa_sf: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1);
if (!Offset)
return Offset.takeError();
Row.getCFAValue() =
UnwindLocation::createIsRegisterPlusOffset(*RegNum, *Offset);
break;
}
case dwarf::DW_CFA_LLVM_def_aspace_cfa:
case dwarf::DW_CFA_LLVM_def_aspace_cfa_sf: {
llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0);
if (!RegNum)
return RegNum.takeError();
llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1);
if (!Offset)
return Offset.takeError();
llvm::Expected<uint32_t> CFAAddrSpace =
Inst.getOperandAsUnsigned(CFIP, 2);
if (!CFAAddrSpace)
return CFAAddrSpace.takeError();
Row.getCFAValue() = UnwindLocation::createIsRegisterPlusOffset(
*RegNum, *Offset, *CFAAddrSpace);
break;
}
case dwarf::DW_CFA_def_cfa_expression:
Row.getCFAValue() =
UnwindLocation::createIsDWARFExpression(*Inst.Expression);
break;
}
}
return Error::success();
}
ArrayRef<CFIProgram::OperandType[CFIProgram::MaxOperands]>
CFIProgram::getOperandTypes() {
static OperandType OpTypes[DW_CFA_restore + 1][MaxOperands];
static bool Initialized = false;
if (Initialized) {
return ArrayRef<OperandType[MaxOperands]>(&OpTypes[0], DW_CFA_restore + 1);
}
Initialized = true;
#define DECLARE_OP3(OP, OPTYPE0, OPTYPE1, OPTYPE2) \
do { \
OpTypes[OP][0] = OPTYPE0; \
OpTypes[OP][1] = OPTYPE1; \
OpTypes[OP][2] = OPTYPE2; \
} while (false)
#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
DECLARE_OP3(OP, OPTYPE0, OPTYPE1, OT_None)
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
DECLARE_OP1(DW_CFA_set_loc, OT_Address);
DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
DECLARE_OP3(DW_CFA_LLVM_def_aspace_cfa, OT_Register, OT_Offset,
OT_AddressSpace);
DECLARE_OP3(DW_CFA_LLVM_def_aspace_cfa_sf, OT_Register,
OT_SignedFactDataOffset, OT_AddressSpace);
DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
DECLARE_OP1(DW_CFA_undefined, OT_Register);
DECLARE_OP1(DW_CFA_same_value, OT_Register);
DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
DECLARE_OP1(DW_CFA_restore, OT_Register);
DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
DECLARE_OP0(DW_CFA_remember_state);
DECLARE_OP0(DW_CFA_restore_state);
DECLARE_OP0(DW_CFA_GNU_window_save);
DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
DECLARE_OP0(DW_CFA_nop);
#undef DECLARE_OP0
#undef DECLARE_OP1
#undef DECLARE_OP2
return ArrayRef<OperandType[MaxOperands]>(&OpTypes[0], DW_CFA_restore + 1);
}
/// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
void CFIProgram::printOperand(raw_ostream &OS, DIDumpOptions DumpOpts,
const MCRegisterInfo *MRI, bool IsEH,
const Instruction &Instr, unsigned OperandIdx,
uint64_t Operand) const {
assert(OperandIdx < MaxOperands);
uint8_t Opcode = Instr.Opcode;
OperandType Type = getOperandTypes()[Opcode][OperandIdx];
switch (Type) {
case OT_Unset: {
OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
auto OpcodeName = callFrameString(Opcode);
if (!OpcodeName.empty())
OS << " " << OpcodeName;
else
OS << format(" Opcode %x", Opcode);
break;
}
case OT_None:
break;
case OT_Address:
OS << format(" %" PRIx64, Operand);
break;
case OT_Offset:
// The offsets are all encoded in a unsigned form, but in practice
// consumers use them signed. It's most certainly legacy due to
// the lack of signed variants in the first Dwarf standards.
OS << format(" %+" PRId64, int64_t(Operand));
break;
case OT_FactoredCodeOffset: // Always Unsigned
if (CodeAlignmentFactor)
OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
else
OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
break;
case OT_SignedFactDataOffset:
if (DataAlignmentFactor)
OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
else
OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
break;
case OT_UnsignedFactDataOffset:
if (DataAlignmentFactor)
OS << format(" %" PRId64, Operand * DataAlignmentFactor);
else
OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
break;
case OT_Register:
OS << ' ';
printRegister(OS, MRI, IsEH, Operand);
break;
case OT_AddressSpace:
OS << format(" in addrspace%" PRId64, Operand);
break;
case OT_Expression:
assert(Instr.Expression && "missing DWARFExpression object");
OS << " ";
Instr.Expression->print(OS, DumpOpts, MRI, nullptr, IsEH);
break;
}
}
void CFIProgram::dump(raw_ostream &OS, DIDumpOptions DumpOpts,
const MCRegisterInfo *MRI, bool IsEH,
unsigned IndentLevel) const {
for (const auto &Instr : Instructions) {
uint8_t Opcode = Instr.Opcode;
OS.indent(2 * IndentLevel);
OS << callFrameString(Opcode) << ":";
for (unsigned i = 0; i < Instr.Ops.size(); ++i)
printOperand(OS, DumpOpts, MRI, IsEH, Instr, i, Instr.Ops[i]);
OS << '\n';
}
}
// Returns the CIE identifier to be used by the requested format.
// CIE ids for .debug_frame sections are defined in Section 7.24 of DWARFv5.
// For CIE ID in .eh_frame sections see
// https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
constexpr uint64_t getCIEId(bool IsDWARF64, bool IsEH) {
if (IsEH)
return 0;
if (IsDWARF64)
return DW64_CIE_ID;
return DW_CIE_ID;
}
void CIE::dump(raw_ostream &OS, DIDumpOptions DumpOpts,
const MCRegisterInfo *MRI, bool IsEH) const {
// A CIE with a zero length is a terminator entry in the .eh_frame section.
if (IsEH && Length == 0) {
OS << format("%08" PRIx64, Offset) << " ZERO terminator\n";
return;
}
OS << format("%08" PRIx64, Offset)
<< format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
<< format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8,
getCIEId(IsDWARF64, IsEH))
<< " CIE\n"
<< " Format: " << FormatString(IsDWARF64) << "\n";
if (IsEH && Version != 1)
OS << "WARNING: unsupported CIE version\n";
OS << format(" Version: %d\n", Version)
<< " Augmentation: \"" << Augmentation << "\"\n";
if (Version >= 4) {
OS << format(" Address size: %u\n", (uint32_t)AddressSize);
OS << format(" Segment desc size: %u\n",
(uint32_t)SegmentDescriptorSize);
}
OS << format(" Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor);
OS << format(" Data alignment factor: %d\n", (int32_t)DataAlignmentFactor);
OS << format(" Return address column: %d\n", (int32_t)ReturnAddressRegister);
if (Personality)
OS << format(" Personality Address: %016" PRIx64 "\n", *Personality);
if (!AugmentationData.empty()) {
OS << " Augmentation data: ";
for (uint8_t Byte : AugmentationData)
OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
OS << "\n";
}
OS << "\n";
CFIs.dump(OS, DumpOpts, MRI, IsEH);
OS << "\n";
if (Expected<UnwindTable> RowsOrErr = UnwindTable::create(this))
RowsOrErr->dump(OS, MRI, IsEH, 1);
else {
DumpOpts.RecoverableErrorHandler(joinErrors(
createStringError(errc::invalid_argument,
"decoding the CIE opcodes into rows failed"),
RowsOrErr.takeError()));
}
OS << "\n";
}
void FDE::dump(raw_ostream &OS, DIDumpOptions DumpOpts,
const MCRegisterInfo *MRI, bool IsEH) const {
OS << format("%08" PRIx64, Offset)
<< format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
<< format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, CIEPointer)
<< " FDE cie=";
if (LinkedCIE)
OS << format("%08" PRIx64, LinkedCIE->getOffset());
else
OS << "<invalid offset>";
OS << format(" pc=%08" PRIx64 "...%08" PRIx64 "\n", InitialLocation,
InitialLocation + AddressRange);
OS << " Format: " << FormatString(IsDWARF64) << "\n";
if (LSDAAddress)
OS << format(" LSDA Address: %016" PRIx64 "\n", *LSDAAddress);
CFIs.dump(OS, DumpOpts, MRI, IsEH);
OS << "\n";
if (Expected<UnwindTable> RowsOrErr = UnwindTable::create(this))
RowsOrErr->dump(OS, MRI, IsEH, 1);
else {
DumpOpts.RecoverableErrorHandler(joinErrors(
createStringError(errc::invalid_argument,
"decoding the FDE opcodes into rows failed"),
RowsOrErr.takeError()));
}
OS << "\n";
}
DWARFDebugFrame::DWARFDebugFrame(Triple::ArchType Arch,
bool IsEH, uint64_t EHFrameAddress)
: Arch(Arch), IsEH(IsEH), EHFrameAddress(EHFrameAddress) {}
DWARFDebugFrame::~DWARFDebugFrame() = default;
static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
uint64_t Offset, int Length) {
errs() << "DUMP: ";
for (int i = 0; i < Length; ++i) {
uint8_t c = Data.getU8(&Offset);
errs().write_hex(c); errs() << " ";
}
errs() << "\n";
}
Error DWARFDebugFrame::parse(DWARFDataExtractor Data) {
uint64_t Offset = 0;
DenseMap<uint64_t, CIE *> CIEs;
while (Data.isValidOffset(Offset)) {
uint64_t StartOffset = Offset;
uint64_t Length;
DwarfFormat Format;
std::tie(Length, Format) = Data.getInitialLength(&Offset);
bool IsDWARF64 = Format == DWARF64;
// If the Length is 0, then this CIE is a terminator. We add it because some
// dumper tools might need it to print something special for such entries
// (e.g. llvm-objdump --dwarf=frames prints "ZERO terminator").
if (Length == 0) {
auto Cie = std::make_unique<CIE>(
IsDWARF64, StartOffset, 0, 0, SmallString<8>(), 0, 0, 0, 0, 0,
SmallString<8>(), 0, 0, std::nullopt, std::nullopt, Arch);
CIEs[StartOffset] = Cie.get();
Entries.push_back(std::move(Cie));
break;
}
// At this point, Offset points to the next field after Length.
// Length is the structure size excluding itself. Compute an offset one
// past the end of the structure (needed to know how many instructions to
// read).
uint64_t StartStructureOffset = Offset;
uint64_t EndStructureOffset = Offset + Length;
// The Id field's size depends on the DWARF format
Error Err = Error::success();
uint64_t Id = Data.getRelocatedValue((IsDWARF64 && !IsEH) ? 8 : 4, &Offset,
/*SectionIndex=*/nullptr, &Err);
if (Err)
return Err;
if (Id == getCIEId(IsDWARF64, IsEH)) {
uint8_t Version = Data.getU8(&Offset);
const char *Augmentation = Data.getCStr(&Offset);
StringRef AugmentationString(Augmentation ? Augmentation : "");
uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
Data.getU8(&Offset);
Data.setAddressSize(AddressSize);
uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
uint64_t ReturnAddressRegister =
Version == 1 ? Data.getU8(&Offset) : Data.getULEB128(&Offset);
// Parse the augmentation data for EH CIEs
StringRef AugmentationData("");
uint32_t FDEPointerEncoding = DW_EH_PE_absptr;
uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
std::optional<uint64_t> Personality;
std::optional<uint32_t> PersonalityEncoding;
if (IsEH) {
std::optional<uint64_t> AugmentationLength;
uint64_t StartAugmentationOffset;
uint64_t EndAugmentationOffset;
// Walk the augmentation string to get all the augmentation data.
for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
switch (AugmentationString[i]) {
default:
return createStringError(
errc::invalid_argument,
"unknown augmentation character %c in entry at 0x%" PRIx64,
AugmentationString[i], StartOffset);
case 'L':
LSDAPointerEncoding = Data.getU8(&Offset);
break;
case 'P': {
if (Personality)
return createStringError(
errc::invalid_argument,
"duplicate personality in entry at 0x%" PRIx64, StartOffset);
PersonalityEncoding = Data.getU8(&Offset);
Personality = Data.getEncodedPointer(
&Offset, *PersonalityEncoding,
EHFrameAddress ? EHFrameAddress + Offset : 0);
break;
}
case 'R':
FDEPointerEncoding = Data.getU8(&Offset);
break;
case 'S':
// Current frame is a signal trampoline.
break;
case 'z':
if (i)
return createStringError(
errc::invalid_argument,
"'z' must be the first character at 0x%" PRIx64, StartOffset);
// Parse the augmentation length first. We only parse it if
// the string contains a 'z'.
AugmentationLength = Data.getULEB128(&Offset);
StartAugmentationOffset = Offset;
EndAugmentationOffset = Offset + *AugmentationLength;
break;
case 'B':
// B-Key is used for signing functions associated with this
// augmentation string
break;
// This stack frame contains MTE tagged data, so needs to be
// untagged on unwind.
case 'G':
break;
}
}
if (AugmentationLength) {
if (Offset != EndAugmentationOffset)
return createStringError(errc::invalid_argument,
"parsing augmentation data at 0x%" PRIx64
" failed",
StartOffset);
AugmentationData = Data.getData().slice(StartAugmentationOffset,
EndAugmentationOffset);
}
}
auto Cie = std::make_unique<CIE>(
IsDWARF64, StartOffset, Length, Version, AugmentationString,
AddressSize, SegmentDescriptorSize, CodeAlignmentFactor,
DataAlignmentFactor, ReturnAddressRegister, AugmentationData,
FDEPointerEncoding, LSDAPointerEncoding, Personality,
PersonalityEncoding, Arch);
CIEs[StartOffset] = Cie.get();
Entries.emplace_back(std::move(Cie));
} else {
// FDE
uint64_t CIEPointer = Id;
uint64_t InitialLocation = 0;
uint64_t AddressRange = 0;
std::optional<uint64_t> LSDAAddress;
CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];
if (IsEH) {
// The address size is encoded in the CIE we reference.
if (!Cie)
return createStringError(errc::invalid_argument,
"parsing FDE data at 0x%" PRIx64
" failed due to missing CIE",
StartOffset);
if (auto Val =
Data.getEncodedPointer(&Offset, Cie->getFDEPointerEncoding(),
EHFrameAddress + Offset)) {
InitialLocation = *Val;
}
if (auto Val = Data.getEncodedPointer(
&Offset, Cie->getFDEPointerEncoding(), 0)) {
AddressRange = *Val;
}
StringRef AugmentationString = Cie->getAugmentationString();
if (!AugmentationString.empty()) {
// Parse the augmentation length and data for this FDE.
uint64_t AugmentationLength = Data.getULEB128(&Offset);
uint64_t EndAugmentationOffset = Offset + AugmentationLength;
// Decode the LSDA if the CIE augmentation string said we should.
if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) {
LSDAAddress = Data.getEncodedPointer(
&Offset, Cie->getLSDAPointerEncoding(),
EHFrameAddress ? Offset + EHFrameAddress : 0);
}
if (Offset != EndAugmentationOffset)
return createStringError(errc::invalid_argument,
"parsing augmentation data at 0x%" PRIx64
" failed",
StartOffset);
}
} else {
InitialLocation = Data.getRelocatedAddress(&Offset);
AddressRange = Data.getRelocatedAddress(&Offset);
}
Entries.emplace_back(new FDE(IsDWARF64, StartOffset, Length, CIEPointer,
InitialLocation, AddressRange, Cie,
LSDAAddress, Arch));
}
if (Error E =
Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset))
return E;
if (Offset != EndStructureOffset)
return createStringError(
errc::invalid_argument,
"parsing entry instructions at 0x%" PRIx64 " failed", StartOffset);
}
return Error::success();
}
FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const {
auto It = partition_point(Entries, [=](const std::unique_ptr<FrameEntry> &E) {
return E->getOffset() < Offset;
});
if (It != Entries.end() && (*It)->getOffset() == Offset)
return It->get();
return nullptr;
}
void DWARFDebugFrame::dump(raw_ostream &OS, DIDumpOptions DumpOpts,
const MCRegisterInfo *MRI,
std::optional<uint64_t> Offset) const {
if (Offset) {
if (auto *Entry = getEntryAtOffset(*Offset))
Entry->dump(OS, DumpOpts, MRI, IsEH);
return;
}
OS << "\n";
for (const auto &Entry : Entries)
Entry->dump(OS, DumpOpts, MRI, IsEH);
}