Go to file
Freddy Ye 89f36dd8f3 [X86] Add ExpandLargeFpConvert Pass and enable for X86
As stated in
https://discourse.llvm.org/t/rfc-llc-add-expandlargeintfpconvert-pass-for-fp-int-conversion-of-large-bitint/65528,
this implementation is very similar to ExpandLargeDivRem, which expands
‘fptoui .. to’, ‘fptosi .. to’, ‘uitofp .. to’, ‘sitofp .. to’ instructions
with a bitwidth above a threshold into auto-generated functions. This is
useful for targets like x86_64 that cannot lower fp convertions with more
than 128 bits. The expanded nodes are referring from the IR generated by
`compiler-rt/lib/builtins/floattidf.c`, `compiler-rt/lib/builtins/fixdfti.c`,
and etc.

Corner cases:
1. For fp16: as there is no related builtins added in compliler-rt. So I
mainly utilized the fp32 <-> fp16 lib calls to implement.
2. For fp80: as this pass is soft fp emulation and no fp80 instructions can
help in this problem. I recommend users to deprecate this usage. For now, the
implementation uses fp128 as the temporary conversion type and inserts
fptrunc/ext at top/end of the function.
3. For bf16: as clang FE currently doesn't support bf16 algorithm operations
(convert to int, float, +, -, *, ...), this patch doesn't consider bf16 for
now.
4. For unsigned FPToI: since both default hardware behaviors and libgcc are
ignoring "returns 0 for negative input" spec. This pass follows this old way
to ignore unsigned FPToI. See this example:
https://gcc.godbolt.org/z/bnv3jqW1M

The end-to-end tests are uploaded at https://reviews.llvm.org/D138261

Reviewed By: LuoYuanke, mgehre-amd

Differential Revision: https://reviews.llvm.org/D137241
2022-12-01 13:47:43 +08:00
.github [NFC] Fix exception in version-check.py script 2022-09-15 13:34:29 +02:00
bolt [BOLT] Fix unused function warnings 2022-11-29 11:13:14 -08:00
clang [AMX] Support AMX-FP16 new intrinsic interface 2022-12-01 09:47:53 +08:00
clang-tools-extra [clang-tidy] Suppress google-objc-avoid-throwing-exception in system macros 🫢 2022-11-30 16:44:45 -08:00
cmake [cmake] Add missing CMakePushCheckState include to FindLibEdit.cmake 2022-11-07 18:20:19 +01:00
compiler-rt [HWASAN] Modified __hwasan::Thread::unique_id_ to be u32 instead of u64. 2022-12-01 00:44:22 +00:00
cross-project-tests [dexter-tests] Add attribute optnone to main function 2022-10-26 20:57:49 +00:00
flang [flang] Use proper attributes for runtime calls with 'i1' arguments/returns. 2022-11-30 11:51:34 -08:00
libc [libc] add unsafe mode to strlen 2022-11-30 16:48:35 -08:00
libclc libclc: Use cmake files instead of llvm-config 2022-11-22 22:57:46 -08:00
libcxx [libc++][math.h] move #undefs to the top and guard explicitly against MSVCRT instead 2022-11-30 00:50:12 +01:00
libcxxabi [libc++abi][LIT][AIX] Use Vector instructions available on Power7 in vec_reg_restore.pass.cpp 2022-11-29 14:08:03 -05:00
libunwind [CMake] Use LLVM_TARGET_TRIPLE in runtimes 2022-11-29 04:08:24 +00:00
lld Revert "enable code-object-version=5" 2022-11-29 15:21:09 -06:00
lldb Report which modules have forcefully completed types in statistics. 2022-11-30 21:22:27 -08:00
llvm [X86] Add ExpandLargeFpConvert Pass and enable for X86 2022-12-01 13:47:43 +08:00
llvm-libgcc [cmake] Slight fix ups to make robust to the full range of GNUInstallDirs 2022-07-26 14:48:49 +00:00
mlir [mlir][spirv] Fix missing parameter usage 2022-12-01 05:05:16 +00:00
openmp Revert "[OpenMP] [OMPD] Enable OMPD Tests" 2022-11-30 16:37:01 +05:30
polly Add version to all LLVM cmake package 2022-11-25 21:57:58 +00:00
pstl Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
runtimes [runtimes] Fix runtimes-test-depends 2022-11-30 16:55:51 -08:00
third-party [llvm] [cmake] Set EXCLUDE_FROM_ALL on gtest and TestingSupport 2022-11-24 17:52:22 +01:00
utils [mlir][spirv] Drop experimental LinalgToSPIRV pass 2022-11-30 19:25:40 -05:00
.arcconfig
.arclint
.clang-format
.clang-tidy Add -misc-const-correctness to .clang-tidy 2022-08-08 13:00:52 -07:00
.git-blame-ignore-revs Add __config formatting to .git-blame-ignore-revs 2022-06-14 09:52:49 -04:00
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap [mailmap] Add entry for myself 2022-08-08 16:29:06 +08:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
LICENSE.TXT [docs] Add LICENSE.txt to the root of the mono-repo 2022-08-24 09:35:00 +02:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.