forked from OSchip/llvm-project
1294 lines
47 KiB
C++
1294 lines
47 KiB
C++
//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides helpers for the implementation of
|
|
/// a TargetTransformInfo-conforming class.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
|
|
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
|
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include <optional>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class Function;
|
|
|
|
/// Base class for use as a mix-in that aids implementing
|
|
/// a TargetTransformInfo-compatible class.
|
|
class TargetTransformInfoImplBase {
|
|
protected:
|
|
typedef TargetTransformInfo TTI;
|
|
|
|
const DataLayout &DL;
|
|
|
|
explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
|
|
|
|
public:
|
|
// Provide value semantics. MSVC requires that we spell all of these out.
|
|
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) = default;
|
|
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
|
|
|
|
const DataLayout &getDataLayout() const { return DL; }
|
|
|
|
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands,
|
|
TTI::TargetCostKind CostKind) const {
|
|
// In the basic model, we just assume that all-constant GEPs will be folded
|
|
// into their uses via addressing modes.
|
|
for (const Value *Operand : Operands)
|
|
if (!isa<Constant>(Operand))
|
|
return TTI::TCC_Basic;
|
|
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
|
|
unsigned &JTSize,
|
|
ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI) const {
|
|
(void)PSI;
|
|
(void)BFI;
|
|
JTSize = 0;
|
|
return SI.getNumCases();
|
|
}
|
|
|
|
unsigned getInliningThresholdMultiplier() const { return 1; }
|
|
unsigned adjustInliningThreshold(const CallBase *CB) const { return 0; }
|
|
|
|
int getInlinerVectorBonusPercent() const { return 150; }
|
|
|
|
InstructionCost getMemcpyCost(const Instruction *I) const {
|
|
return TTI::TCC_Expensive;
|
|
}
|
|
|
|
// Although this default value is arbitrary, it is not random. It is assumed
|
|
// that a condition that evaluates the same way by a higher percentage than
|
|
// this is best represented as control flow. Therefore, the default value N
|
|
// should be set such that the win from N% correct executions is greater than
|
|
// the loss from (100 - N)% mispredicted executions for the majority of
|
|
// intended targets.
|
|
BranchProbability getPredictableBranchThreshold() const {
|
|
return BranchProbability(99, 100);
|
|
}
|
|
|
|
bool hasBranchDivergence() const { return false; }
|
|
|
|
bool useGPUDivergenceAnalysis() const { return false; }
|
|
|
|
bool isSourceOfDivergence(const Value *V) const { return false; }
|
|
|
|
bool isAlwaysUniform(const Value *V) const { return false; }
|
|
|
|
unsigned getFlatAddressSpace() const { return -1; }
|
|
|
|
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
|
|
Intrinsic::ID IID) const {
|
|
return false;
|
|
}
|
|
|
|
bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; }
|
|
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const {
|
|
return AS == 0;
|
|
};
|
|
|
|
unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
|
|
|
|
bool isSingleThreaded() const { return false; }
|
|
|
|
std::pair<const Value *, unsigned>
|
|
getPredicatedAddrSpace(const Value *V) const {
|
|
return std::make_pair(nullptr, -1);
|
|
}
|
|
|
|
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
|
|
Value *NewV) const {
|
|
return nullptr;
|
|
}
|
|
|
|
bool isLoweredToCall(const Function *F) const {
|
|
assert(F && "A concrete function must be provided to this routine.");
|
|
|
|
// FIXME: These should almost certainly not be handled here, and instead
|
|
// handled with the help of TLI or the target itself. This was largely
|
|
// ported from existing analysis heuristics here so that such refactorings
|
|
// can take place in the future.
|
|
|
|
if (F->isIntrinsic())
|
|
return false;
|
|
|
|
if (F->hasLocalLinkage() || !F->hasName())
|
|
return true;
|
|
|
|
StringRef Name = F->getName();
|
|
|
|
// These will all likely lower to a single selection DAG node.
|
|
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
|
|
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
|
|
Name == "fmin" || Name == "fminf" || Name == "fminl" ||
|
|
Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
|
|
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
|
|
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
|
|
return false;
|
|
|
|
// These are all likely to be optimized into something smaller.
|
|
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
|
|
Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
|
|
Name == "floorf" || Name == "ceil" || Name == "round" ||
|
|
Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
|
|
Name == "llabs")
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
|
|
AssumptionCache &AC, TargetLibraryInfo *LibInfo,
|
|
HardwareLoopInfo &HWLoopInfo) const {
|
|
return false;
|
|
}
|
|
|
|
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
|
|
AssumptionCache &AC, TargetLibraryInfo *TLI,
|
|
DominatorTree *DT,
|
|
LoopVectorizationLegality *LVL,
|
|
InterleavedAccessInfo *IAI) const {
|
|
return false;
|
|
}
|
|
|
|
PredicationStyle emitGetActiveLaneMask() const {
|
|
return PredicationStyle::None;
|
|
}
|
|
|
|
std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
|
|
IntrinsicInst &II) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *>
|
|
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
|
|
APInt DemandedMask, KnownBits &Known,
|
|
bool &KnownBitsComputed) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
|
|
APInt &UndefElts2, APInt &UndefElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
void getUnrollingPreferences(Loop *, ScalarEvolution &,
|
|
TTI::UnrollingPreferences &,
|
|
OptimizationRemarkEmitter *) const {}
|
|
|
|
void getPeelingPreferences(Loop *, ScalarEvolution &,
|
|
TTI::PeelingPreferences &) const {}
|
|
|
|
bool isLegalAddImmediate(int64_t Imm) const { return false; }
|
|
|
|
bool isLegalICmpImmediate(int64_t Imm) const { return false; }
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
|
|
Instruction *I = nullptr) const {
|
|
// Guess that only reg and reg+reg addressing is allowed. This heuristic is
|
|
// taken from the implementation of LSR.
|
|
return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
|
|
}
|
|
|
|
bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const {
|
|
return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
|
|
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
|
|
std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
|
|
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
|
|
}
|
|
|
|
bool isNumRegsMajorCostOfLSR() const { return true; }
|
|
|
|
bool isProfitableLSRChainElement(Instruction *I) const { return false; }
|
|
|
|
bool canMacroFuseCmp() const { return false; }
|
|
|
|
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
|
|
DominatorTree *DT, AssumptionCache *AC,
|
|
TargetLibraryInfo *LibInfo) const {
|
|
return false;
|
|
}
|
|
|
|
TTI::AddressingModeKind
|
|
getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const {
|
|
return TTI::AMK_None;
|
|
}
|
|
|
|
bool isLegalMaskedStore(Type *DataType, Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalNTStore(Type *DataType, Align Alignment) const {
|
|
// By default, assume nontemporal memory stores are available for stores
|
|
// that are aligned and have a size that is a power of 2.
|
|
unsigned DataSize = DL.getTypeStoreSize(DataType);
|
|
return Alignment >= DataSize && isPowerOf2_32(DataSize);
|
|
}
|
|
|
|
bool isLegalNTLoad(Type *DataType, Align Alignment) const {
|
|
// By default, assume nontemporal memory loads are available for loads that
|
|
// are aligned and have a size that is a power of 2.
|
|
unsigned DataSize = DL.getTypeStoreSize(DataType);
|
|
return Alignment >= DataSize && isPowerOf2_32(DataSize);
|
|
}
|
|
|
|
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
bool forceScalarizeMaskedScatter(VectorType *DataType,
|
|
Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalMaskedCompressStore(Type *DataType) const { return false; }
|
|
|
|
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
|
|
const SmallBitVector &OpcodeMask) const {
|
|
return false;
|
|
}
|
|
|
|
bool isLegalMaskedExpandLoad(Type *DataType) const { return false; }
|
|
|
|
bool enableOrderedReductions() const { return false; }
|
|
|
|
bool hasDivRemOp(Type *DataType, bool IsSigned) const { return false; }
|
|
|
|
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const {
|
|
return false;
|
|
}
|
|
|
|
bool prefersVectorizedAddressing() const { return true; }
|
|
|
|
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale,
|
|
unsigned AddrSpace) const {
|
|
// Guess that all legal addressing mode are free.
|
|
if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
|
|
AddrSpace))
|
|
return 0;
|
|
return -1;
|
|
}
|
|
|
|
bool LSRWithInstrQueries() const { return false; }
|
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; }
|
|
|
|
bool isProfitableToHoist(Instruction *I) const { return true; }
|
|
|
|
bool useAA() const { return false; }
|
|
|
|
bool isTypeLegal(Type *Ty) const { return false; }
|
|
|
|
unsigned getRegUsageForType(Type *Ty) const { return 1; }
|
|
|
|
bool shouldBuildLookupTables() const { return true; }
|
|
|
|
bool shouldBuildLookupTablesForConstant(Constant *C) const { return true; }
|
|
|
|
bool shouldBuildRelLookupTables() const { return false; }
|
|
|
|
bool useColdCCForColdCall(Function &F) const { return false; }
|
|
|
|
InstructionCost getScalarizationOverhead(VectorType *Ty,
|
|
const APInt &DemandedElts,
|
|
bool Insert, bool Extract) const {
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
ArrayRef<Type *> Tys) const {
|
|
return 0;
|
|
}
|
|
|
|
bool supportsEfficientVectorElementLoadStore() const { return false; }
|
|
|
|
bool supportsTailCalls() const { return true; }
|
|
|
|
bool supportsTailCallFor(const CallBase *CB) const {
|
|
return supportsTailCalls();
|
|
}
|
|
|
|
bool enableAggressiveInterleaving(bool LoopHasReductions) const {
|
|
return false;
|
|
}
|
|
|
|
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
|
|
bool IsZeroCmp) const {
|
|
return {};
|
|
}
|
|
|
|
bool enableInterleavedAccessVectorization() const { return false; }
|
|
|
|
bool enableMaskedInterleavedAccessVectorization() const { return false; }
|
|
|
|
bool isFPVectorizationPotentiallyUnsafe() const { return false; }
|
|
|
|
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
|
|
unsigned AddressSpace, Align Alignment,
|
|
unsigned *Fast) const {
|
|
return false;
|
|
}
|
|
|
|
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
|
|
return TTI::PSK_Software;
|
|
}
|
|
|
|
bool haveFastSqrt(Type *Ty) const { return false; }
|
|
|
|
bool isExpensiveToSpeculativelyExecute(const Instruction *I) { return true; }
|
|
|
|
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { return true; }
|
|
|
|
InstructionCost getFPOpCost(Type *Ty) const {
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
|
|
InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty) const {
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return TTI::TCC_Basic;
|
|
}
|
|
|
|
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst = nullptr) const {
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
|
|
|
|
unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
|
|
return Vector ? 1 : 0;
|
|
};
|
|
|
|
const char *getRegisterClassName(unsigned ClassID) const {
|
|
switch (ClassID) {
|
|
default:
|
|
return "Generic::Unknown Register Class";
|
|
case 0:
|
|
return "Generic::ScalarRC";
|
|
case 1:
|
|
return "Generic::VectorRC";
|
|
}
|
|
}
|
|
|
|
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
return TypeSize::getFixed(32);
|
|
}
|
|
|
|
unsigned getMinVectorRegisterBitWidth() const { return 128; }
|
|
|
|
std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
|
|
std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; }
|
|
|
|
bool
|
|
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const {
|
|
return false;
|
|
}
|
|
|
|
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const {
|
|
return ElementCount::get(0, IsScalable);
|
|
}
|
|
|
|
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { return 0; }
|
|
unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const { return VF; }
|
|
|
|
bool shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
|
|
AllowPromotionWithoutCommonHeader = false;
|
|
return false;
|
|
}
|
|
|
|
unsigned getCacheLineSize() const { return 0; }
|
|
std::optional<unsigned>
|
|
getCacheSize(TargetTransformInfo::CacheLevel Level) const {
|
|
switch (Level) {
|
|
case TargetTransformInfo::CacheLevel::L1D:
|
|
[[fallthrough]];
|
|
case TargetTransformInfo::CacheLevel::L2D:
|
|
return std::nullopt;
|
|
}
|
|
llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
|
|
switch (Level) {
|
|
case TargetTransformInfo::CacheLevel::L1D:
|
|
[[fallthrough]];
|
|
case TargetTransformInfo::CacheLevel::L2D:
|
|
return std::nullopt;
|
|
}
|
|
|
|
llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
|
|
}
|
|
|
|
unsigned getPrefetchDistance() const { return 0; }
|
|
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
|
|
unsigned NumStridedMemAccesses,
|
|
unsigned NumPrefetches, bool HasCall) const {
|
|
return 1;
|
|
}
|
|
unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }
|
|
bool enableWritePrefetching() const { return false; }
|
|
bool shouldPrefetchAddressSpace(unsigned AS) const { return !AS; }
|
|
|
|
unsigned getMaxInterleaveFactor(unsigned VF) const { return 1; }
|
|
|
|
InstructionCost getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI = nullptr) const {
|
|
// FIXME: A number of transformation tests seem to require these values
|
|
// which seems a little odd for how arbitary there are.
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
case Instruction::SDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::UDiv:
|
|
case Instruction::URem:
|
|
// FIXME: Unlikely to be true for CodeSize.
|
|
return TTI::TCC_Expensive;
|
|
}
|
|
|
|
// Assume a 3cy latency for fp arithmetic ops.
|
|
if (CostKind == TTI::TCK_Latency)
|
|
if (Ty->getScalarType()->isFloatingPointTy())
|
|
return 3;
|
|
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Ty,
|
|
ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind, int Index,
|
|
VectorType *SubTp,
|
|
ArrayRef<const Value *> Args = None) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const {
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::IntToPtr: {
|
|
unsigned SrcSize = Src->getScalarSizeInBits();
|
|
if (DL.isLegalInteger(SrcSize) &&
|
|
SrcSize <= DL.getPointerTypeSizeInBits(Dst))
|
|
return 0;
|
|
break;
|
|
}
|
|
case Instruction::PtrToInt: {
|
|
unsigned DstSize = Dst->getScalarSizeInBits();
|
|
if (DL.isLegalInteger(DstSize) &&
|
|
DstSize >= DL.getPointerTypeSizeInBits(Src))
|
|
return 0;
|
|
break;
|
|
}
|
|
case Instruction::BitCast:
|
|
if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
|
|
// Identity and pointer-to-pointer casts are free.
|
|
return 0;
|
|
break;
|
|
case Instruction::Trunc: {
|
|
// trunc to a native type is free (assuming the target has compare and
|
|
// shift-right of the same width).
|
|
TypeSize DstSize = DL.getTypeSizeInBits(Dst);
|
|
if (!DstSize.isScalable() && DL.isLegalInteger(DstSize.getFixedSize()))
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
|
|
VectorType *VecTy,
|
|
unsigned Index) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) const {
|
|
// A phi would be free, unless we're costing the throughput because it
|
|
// will require a register.
|
|
if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
|
|
unsigned Index) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
|
|
const APInt &DemandedDstElts,
|
|
TTI::TargetCostKind CostKind) {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpInfo,
|
|
const Instruction *I) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
|
|
Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
const Value *Ptr, bool VariableMask,
|
|
Align Alignment,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) const {
|
|
switch (ICA.getID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::annotation:
|
|
case Intrinsic::assume:
|
|
case Intrinsic::sideeffect:
|
|
case Intrinsic::pseudoprobe:
|
|
case Intrinsic::arithmetic_fence:
|
|
case Intrinsic::dbg_declare:
|
|
case Intrinsic::dbg_value:
|
|
case Intrinsic::dbg_label:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
case Intrinsic::is_constant:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::experimental_noalias_scope_decl:
|
|
case Intrinsic::objectsize:
|
|
case Intrinsic::ptr_annotation:
|
|
case Intrinsic::var_annotation:
|
|
case Intrinsic::experimental_gc_result:
|
|
case Intrinsic::experimental_gc_relocate:
|
|
case Intrinsic::coro_alloc:
|
|
case Intrinsic::coro_begin:
|
|
case Intrinsic::coro_free:
|
|
case Intrinsic::coro_end:
|
|
case Intrinsic::coro_frame:
|
|
case Intrinsic::coro_size:
|
|
case Intrinsic::coro_align:
|
|
case Intrinsic::coro_suspend:
|
|
case Intrinsic::coro_subfn_addr:
|
|
case Intrinsic::threadlocal_address:
|
|
// These intrinsics don't actually represent code after lowering.
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getCallInstrCost(Function *F, Type *RetTy,
|
|
ArrayRef<Type *> Tys,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return 1;
|
|
}
|
|
|
|
// Assume that we have a register of the right size for the type.
|
|
unsigned getNumberOfParts(Type *Tp) const { return 1; }
|
|
|
|
InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *,
|
|
const SCEV *) const {
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost getArithmeticReductionCost(unsigned, VectorType *,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getMinMaxReductionCost(VectorType *, VectorType *, bool,
|
|
TTI::TargetCostKind) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
|
|
Type *ResTy, VectorType *Ty,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
|
|
VectorType *Ty,
|
|
TTI::TargetCostKind CostKind) const {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
|
|
return 0;
|
|
}
|
|
|
|
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const {
|
|
return false;
|
|
}
|
|
|
|
unsigned getAtomicMemIntrinsicMaxElementSize() const {
|
|
// Note for overrides: You must ensure for all element unordered-atomic
|
|
// memory intrinsics that all power-of-2 element sizes up to, and
|
|
// including, the return value of this method have a corresponding
|
|
// runtime lib call. These runtime lib call definitions can be found
|
|
// in RuntimeLibcalls.h
|
|
return 0;
|
|
}
|
|
|
|
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType) const {
|
|
return nullptr;
|
|
}
|
|
|
|
Type *
|
|
getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
|
|
unsigned SrcAddrSpace, unsigned DestAddrSpace,
|
|
unsigned SrcAlign, unsigned DestAlign,
|
|
std::optional<uint32_t> AtomicElementSize) const {
|
|
return AtomicElementSize ? Type::getIntNTy(Context, *AtomicElementSize * 8)
|
|
: Type::getInt8Ty(Context);
|
|
}
|
|
|
|
void getMemcpyLoopResidualLoweringType(
|
|
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
|
|
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
|
|
unsigned SrcAlign, unsigned DestAlign,
|
|
std::optional<uint32_t> AtomicCpySize) const {
|
|
unsigned OpSizeInBytes = AtomicCpySize ? *AtomicCpySize : 1;
|
|
Type *OpType = Type::getIntNTy(Context, OpSizeInBytes * 8);
|
|
for (unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes)
|
|
OpsOut.push_back(OpType);
|
|
}
|
|
|
|
bool areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
return (Caller->getFnAttribute("target-cpu") ==
|
|
Callee->getFnAttribute("target-cpu")) &&
|
|
(Caller->getFnAttribute("target-features") ==
|
|
Callee->getFnAttribute("target-features"));
|
|
}
|
|
|
|
bool areTypesABICompatible(const Function *Caller, const Function *Callee,
|
|
const ArrayRef<Type *> &Types) const {
|
|
return (Caller->getFnAttribute("target-cpu") ==
|
|
Callee->getFnAttribute("target-cpu")) &&
|
|
(Caller->getFnAttribute("target-features") ==
|
|
Callee->getFnAttribute("target-features"));
|
|
}
|
|
|
|
bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
|
|
const DataLayout &DL) const {
|
|
return false;
|
|
}
|
|
|
|
bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
|
|
const DataLayout &DL) const {
|
|
return false;
|
|
}
|
|
|
|
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
|
|
|
|
bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
|
|
|
|
bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
|
|
|
|
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
return true;
|
|
}
|
|
|
|
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
return true;
|
|
}
|
|
|
|
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
|
|
ElementCount VF) const {
|
|
return true;
|
|
}
|
|
|
|
bool isElementTypeLegalForScalableVector(Type *Ty) const { return true; }
|
|
|
|
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const {
|
|
return VF;
|
|
}
|
|
|
|
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const {
|
|
return VF;
|
|
}
|
|
|
|
bool preferInLoopReduction(unsigned Opcode, Type *Ty,
|
|
TTI::ReductionFlags Flags) const {
|
|
return false;
|
|
}
|
|
|
|
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
|
|
TTI::ReductionFlags Flags) const {
|
|
return false;
|
|
}
|
|
|
|
bool preferEpilogueVectorization() const {
|
|
return true;
|
|
}
|
|
|
|
bool shouldExpandReduction(const IntrinsicInst *II) const { return true; }
|
|
|
|
unsigned getGISelRematGlobalCost() const { return 1; }
|
|
|
|
unsigned getMinTripCountTailFoldingThreshold() const { return 0; }
|
|
|
|
bool supportsScalableVectors() const { return false; }
|
|
|
|
bool enableScalableVectorization() const { return false; }
|
|
|
|
bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
|
|
Align Alignment) const {
|
|
return false;
|
|
}
|
|
|
|
TargetTransformInfo::VPLegalization
|
|
getVPLegalizationStrategy(const VPIntrinsic &PI) const {
|
|
return TargetTransformInfo::VPLegalization(
|
|
/* EVLParamStrategy */ TargetTransformInfo::VPLegalization::Discard,
|
|
/* OperatorStrategy */ TargetTransformInfo::VPLegalization::Convert);
|
|
}
|
|
|
|
protected:
|
|
// Obtain the minimum required size to hold the value (without the sign)
|
|
// In case of a vector it returns the min required size for one element.
|
|
unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const {
|
|
if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
|
|
const auto *VectorValue = cast<Constant>(Val);
|
|
|
|
// In case of a vector need to pick the max between the min
|
|
// required size for each element
|
|
auto *VT = cast<FixedVectorType>(Val->getType());
|
|
|
|
// Assume unsigned elements
|
|
isSigned = false;
|
|
|
|
// The max required size is the size of the vector element type
|
|
unsigned MaxRequiredSize =
|
|
VT->getElementType()->getPrimitiveSizeInBits().getFixedSize();
|
|
|
|
unsigned MinRequiredSize = 0;
|
|
for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
|
|
if (auto *IntElement =
|
|
dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
|
|
bool signedElement = IntElement->getValue().isNegative();
|
|
// Get the element min required size.
|
|
unsigned ElementMinRequiredSize =
|
|
IntElement->getValue().getMinSignedBits() - 1;
|
|
// In case one element is signed then all the vector is signed.
|
|
isSigned |= signedElement;
|
|
// Save the max required bit size between all the elements.
|
|
MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
|
|
} else {
|
|
// not an int constant element
|
|
return MaxRequiredSize;
|
|
}
|
|
}
|
|
return MinRequiredSize;
|
|
}
|
|
|
|
if (const auto *CI = dyn_cast<ConstantInt>(Val)) {
|
|
isSigned = CI->getValue().isNegative();
|
|
return CI->getValue().getMinSignedBits() - 1;
|
|
}
|
|
|
|
if (const auto *Cast = dyn_cast<SExtInst>(Val)) {
|
|
isSigned = true;
|
|
return Cast->getSrcTy()->getScalarSizeInBits() - 1;
|
|
}
|
|
|
|
if (const auto *Cast = dyn_cast<ZExtInst>(Val)) {
|
|
isSigned = false;
|
|
return Cast->getSrcTy()->getScalarSizeInBits();
|
|
}
|
|
|
|
isSigned = false;
|
|
return Val->getType()->getScalarSizeInBits();
|
|
}
|
|
|
|
bool isStridedAccess(const SCEV *Ptr) const {
|
|
return Ptr && isa<SCEVAddRecExpr>(Ptr);
|
|
}
|
|
|
|
const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
|
|
const SCEV *Ptr) const {
|
|
if (!isStridedAccess(Ptr))
|
|
return nullptr;
|
|
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
|
|
return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
|
|
}
|
|
|
|
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
|
|
int64_t MergeDistance) const {
|
|
const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
|
|
if (!Step)
|
|
return false;
|
|
APInt StrideVal = Step->getAPInt();
|
|
if (StrideVal.getBitWidth() > 64)
|
|
return false;
|
|
// FIXME: Need to take absolute value for negative stride case.
|
|
return StrideVal.getSExtValue() < MergeDistance;
|
|
}
|
|
};
|
|
|
|
/// CRTP base class for use as a mix-in that aids implementing
|
|
/// a TargetTransformInfo-compatible class.
|
|
template <typename T>
|
|
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
|
|
private:
|
|
typedef TargetTransformInfoImplBase BaseT;
|
|
|
|
protected:
|
|
explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
|
|
|
|
public:
|
|
using BaseT::getGEPCost;
|
|
|
|
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(PointeeType && Ptr && "can't get GEPCost of nullptr");
|
|
assert(cast<PointerType>(Ptr->getType()->getScalarType())
|
|
->isOpaqueOrPointeeTypeMatches(PointeeType) &&
|
|
"explicit pointee type doesn't match operand's pointee type");
|
|
auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
|
|
bool HasBaseReg = (BaseGV == nullptr);
|
|
|
|
auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
|
|
APInt BaseOffset(PtrSizeBits, 0);
|
|
int64_t Scale = 0;
|
|
|
|
auto GTI = gep_type_begin(PointeeType, Operands);
|
|
Type *TargetType = nullptr;
|
|
|
|
// Handle the case where the GEP instruction has a single operand,
|
|
// the basis, therefore TargetType is a nullptr.
|
|
if (Operands.empty())
|
|
return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
|
|
|
|
for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
|
|
TargetType = GTI.getIndexedType();
|
|
// We assume that the cost of Scalar GEP with constant index and the
|
|
// cost of Vector GEP with splat constant index are the same.
|
|
const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
|
|
if (!ConstIdx)
|
|
if (auto Splat = getSplatValue(*I))
|
|
ConstIdx = dyn_cast<ConstantInt>(Splat);
|
|
if (StructType *STy = GTI.getStructTypeOrNull()) {
|
|
// For structures the index is always splat or scalar constant
|
|
assert(ConstIdx && "Unexpected GEP index");
|
|
uint64_t Field = ConstIdx->getZExtValue();
|
|
BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
|
|
} else {
|
|
// If this operand is a scalable type, bail out early.
|
|
// TODO: handle scalable vectors
|
|
if (isa<ScalableVectorType>(TargetType))
|
|
return TTI::TCC_Basic;
|
|
int64_t ElementSize =
|
|
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
|
|
if (ConstIdx) {
|
|
BaseOffset +=
|
|
ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
|
|
} else {
|
|
// Needs scale register.
|
|
if (Scale != 0)
|
|
// No addressing mode takes two scale registers.
|
|
return TTI::TCC_Basic;
|
|
Scale = ElementSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (static_cast<T *>(this)->isLegalAddressingMode(
|
|
TargetType, const_cast<GlobalValue *>(BaseGV),
|
|
BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
|
|
Ptr->getType()->getPointerAddressSpace()))
|
|
return TTI::TCC_Free;
|
|
return TTI::TCC_Basic;
|
|
}
|
|
|
|
InstructionCost getInstructionCost(const User *U,
|
|
ArrayRef<const Value *> Operands,
|
|
TTI::TargetCostKind CostKind) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
auto *TargetTTI = static_cast<T *>(this);
|
|
// Handle non-intrinsic calls, invokes, and callbr.
|
|
// FIXME: Unlikely to be true for anything but CodeSize.
|
|
auto *CB = dyn_cast<CallBase>(U);
|
|
if (CB && !isa<IntrinsicInst>(U)) {
|
|
if (const Function *F = CB->getCalledFunction()) {
|
|
if (!TargetTTI->isLoweredToCall(F))
|
|
return TTI::TCC_Basic; // Give a basic cost if it will be lowered
|
|
|
|
return TTI::TCC_Basic * (F->getFunctionType()->getNumParams() + 1);
|
|
}
|
|
// For indirect or other calls, scale cost by number of arguments.
|
|
return TTI::TCC_Basic * (CB->arg_size() + 1);
|
|
}
|
|
|
|
Type *Ty = U->getType();
|
|
unsigned Opcode = Operator::getOpcode(U);
|
|
auto *I = dyn_cast<Instruction>(U);
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::Call: {
|
|
assert(isa<IntrinsicInst>(U) && "Unexpected non-intrinsic call");
|
|
auto *Intrinsic = cast<IntrinsicInst>(U);
|
|
IntrinsicCostAttributes CostAttrs(Intrinsic->getIntrinsicID(), *CB);
|
|
return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind);
|
|
}
|
|
case Instruction::Br:
|
|
case Instruction::Ret:
|
|
case Instruction::PHI:
|
|
case Instruction::Switch:
|
|
return TargetTTI->getCFInstrCost(Opcode, CostKind, I);
|
|
case Instruction::ExtractValue:
|
|
case Instruction::Freeze:
|
|
return TTI::TCC_Free;
|
|
case Instruction::Alloca:
|
|
if (cast<AllocaInst>(U)->isStaticAlloca())
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Instruction::GetElementPtr: {
|
|
const auto *GEP = cast<GEPOperator>(U);
|
|
return TargetTTI->getGEPCost(GEP->getSourceElementType(),
|
|
GEP->getPointerOperand(),
|
|
Operands.drop_front(), CostKind);
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::FNeg: {
|
|
const TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(U->getOperand(0));
|
|
TTI::OperandValueInfo Op2Info;
|
|
if (Opcode != Instruction::FNeg)
|
|
Op2Info = TTI::getOperandInfo(U->getOperand(1));
|
|
SmallVector<const Value *, 2> Operands(U->operand_values());
|
|
return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
|
|
Op2Info, Operands, I);
|
|
}
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast:
|
|
case Instruction::FPExt:
|
|
case Instruction::SExt:
|
|
case Instruction::ZExt:
|
|
case Instruction::AddrSpaceCast: {
|
|
Type *OpTy = U->getOperand(0)->getType();
|
|
return TargetTTI->getCastInstrCost(
|
|
Opcode, Ty, OpTy, TTI::getCastContextHint(I), CostKind, I);
|
|
}
|
|
case Instruction::Store: {
|
|
auto *SI = cast<StoreInst>(U);
|
|
Type *ValTy = U->getOperand(0)->getType();
|
|
TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(U->getOperand(0));
|
|
return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(),
|
|
SI->getPointerAddressSpace(), CostKind,
|
|
OpInfo, I);
|
|
}
|
|
case Instruction::Load: {
|
|
// FIXME: Arbitary cost which could come from the backend.
|
|
if (CostKind == TTI::TCK_Latency)
|
|
return 4;
|
|
auto *LI = cast<LoadInst>(U);
|
|
Type *LoadType = U->getType();
|
|
// If there is a non-register sized type, the cost estimation may expand
|
|
// it to be several instructions to load into multiple registers on the
|
|
// target. But, if the only use of the load is a trunc instruction to a
|
|
// register sized type, the instruction selector can combine these
|
|
// instructions to be a single load. So, in this case, we use the
|
|
// destination type of the trunc instruction rather than the load to
|
|
// accurately estimate the cost of this load instruction.
|
|
if (CostKind == TTI::TCK_CodeSize && LI->hasOneUse() &&
|
|
!LoadType->isVectorTy()) {
|
|
if (const TruncInst *TI = dyn_cast<TruncInst>(*LI->user_begin()))
|
|
LoadType = TI->getDestTy();
|
|
}
|
|
return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(),
|
|
LI->getPointerAddressSpace(), CostKind,
|
|
{TTI::OK_AnyValue, TTI::OP_None}, I);
|
|
}
|
|
case Instruction::Select: {
|
|
const Value *Op0, *Op1;
|
|
if (match(U, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
|
|
match(U, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
|
|
// select x, y, false --> x & y
|
|
// select x, true, y --> x | y
|
|
const auto Op1Info = TTI::getOperandInfo(Op0);
|
|
const auto Op2Info = TTI::getOperandInfo(Op1);
|
|
assert(Op0->getType()->getScalarSizeInBits() == 1 &&
|
|
Op1->getType()->getScalarSizeInBits() == 1);
|
|
|
|
SmallVector<const Value *, 2> Operands{Op0, Op1};
|
|
return TargetTTI->getArithmeticInstrCost(
|
|
match(U, m_LogicalOr()) ? Instruction::Or : Instruction::And, Ty,
|
|
CostKind, Op1Info, Op2Info, Operands, I);
|
|
}
|
|
Type *CondTy = U->getOperand(0)->getType();
|
|
return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE,
|
|
CostKind, I);
|
|
}
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp: {
|
|
Type *ValTy = U->getOperand(0)->getType();
|
|
// TODO: Also handle ICmp/FCmp constant expressions.
|
|
return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
|
|
I ? cast<CmpInst>(I)->getPredicate()
|
|
: CmpInst::BAD_ICMP_PREDICATE,
|
|
CostKind, I);
|
|
}
|
|
case Instruction::InsertElement: {
|
|
auto *IE = dyn_cast<InsertElementInst>(U);
|
|
if (!IE)
|
|
return TTI::TCC_Basic; // FIXME
|
|
unsigned Idx = -1;
|
|
if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
|
|
if (CI->getValue().getActiveBits() <= 32)
|
|
Idx = CI->getZExtValue();
|
|
return TargetTTI->getVectorInstrCost(*IE, Ty, Idx);
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
auto *Shuffle = dyn_cast<ShuffleVectorInst>(U);
|
|
if (!Shuffle)
|
|
return TTI::TCC_Basic; // FIXME
|
|
|
|
auto *VecTy = cast<VectorType>(U->getType());
|
|
auto *VecSrcTy = cast<VectorType>(U->getOperand(0)->getType());
|
|
int NumSubElts, SubIndex;
|
|
|
|
if (Shuffle->changesLength()) {
|
|
// Treat a 'subvector widening' as a free shuffle.
|
|
if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
|
|
return 0;
|
|
|
|
if (Shuffle->isExtractSubvectorMask(SubIndex))
|
|
return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecSrcTy,
|
|
Shuffle->getShuffleMask(), CostKind,
|
|
SubIndex, VecTy, Operands);
|
|
|
|
if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
|
|
return TargetTTI->getShuffleCost(
|
|
TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(),
|
|
CostKind, SubIndex,
|
|
FixedVectorType::get(VecTy->getScalarType(), NumSubElts),
|
|
Operands);
|
|
|
|
int ReplicationFactor, VF;
|
|
if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
|
|
APInt DemandedDstElts =
|
|
APInt::getNullValue(Shuffle->getShuffleMask().size());
|
|
for (auto I : enumerate(Shuffle->getShuffleMask())) {
|
|
if (I.value() != UndefMaskElem)
|
|
DemandedDstElts.setBit(I.index());
|
|
}
|
|
return TargetTTI->getReplicationShuffleCost(
|
|
VecSrcTy->getElementType(), ReplicationFactor, VF,
|
|
DemandedDstElts, CostKind);
|
|
}
|
|
|
|
return CostKind == TTI::TCK_RecipThroughput ? -1 : 1;
|
|
}
|
|
|
|
if (Shuffle->isIdentity())
|
|
return 0;
|
|
|
|
if (Shuffle->isReverse())
|
|
return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind, 0,
|
|
nullptr, Operands);
|
|
|
|
if (Shuffle->isSelect())
|
|
return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind, 0,
|
|
nullptr, Operands);
|
|
|
|
if (Shuffle->isTranspose())
|
|
return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind, 0,
|
|
nullptr, Operands);
|
|
|
|
if (Shuffle->isZeroEltSplat())
|
|
return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind, 0,
|
|
nullptr, Operands);
|
|
|
|
if (Shuffle->isSingleSource())
|
|
return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind, 0,
|
|
nullptr, Operands);
|
|
|
|
if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
|
|
return TargetTTI->getShuffleCost(
|
|
TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(), CostKind,
|
|
SubIndex, FixedVectorType::get(VecTy->getScalarType(), NumSubElts),
|
|
Operands);
|
|
|
|
if (Shuffle->isSplice(SubIndex))
|
|
return TargetTTI->getShuffleCost(TTI::SK_Splice, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind,
|
|
SubIndex, nullptr, Operands);
|
|
|
|
return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy,
|
|
Shuffle->getShuffleMask(), CostKind, 0,
|
|
nullptr, Operands);
|
|
}
|
|
case Instruction::ExtractElement: {
|
|
auto *EEI = dyn_cast<ExtractElementInst>(U);
|
|
if (!EEI)
|
|
return TTI::TCC_Basic; // FIXME
|
|
unsigned Idx = -1;
|
|
if (auto *CI = dyn_cast<ConstantInt>(EEI->getOperand(1)))
|
|
if (CI->getValue().getActiveBits() <= 32)
|
|
Idx = CI->getZExtValue();
|
|
Type *DstTy = U->getOperand(0)->getType();
|
|
return TargetTTI->getVectorInstrCost(*EEI, DstTy, Idx);
|
|
}
|
|
}
|
|
|
|
// By default, just classify everything as 'basic' or -1 to represent that
|
|
// don't know the throughput cost.
|
|
return CostKind == TTI::TCK_RecipThroughput ? -1 : TTI::TCC_Basic;
|
|
}
|
|
|
|
bool isExpensiveToSpeculativelyExecute(const Instruction *I) {
|
|
auto *TargetTTI = static_cast<T *>(this);
|
|
SmallVector<const Value *, 4> Ops(I->operand_values());
|
|
InstructionCost Cost = TargetTTI->getInstructionCost(
|
|
I, Ops, TargetTransformInfo::TCK_SizeAndLatency);
|
|
return Cost >= TargetTransformInfo::TCC_Expensive;
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
#endif
|