llvm-project/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp

771 lines
37 KiB
C++

//===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library for
// manipulating sparse tensors from MLIR. More specifically, it provides
// C-API wrappers so that MLIR-generated code can call into the C++ runtime
// support library. The functionality provided in this library is meant
// to simplify benchmarking, testing, and debugging of MLIR code operating
// on sparse tensors. However, the provided functionality is **not**
// part of core MLIR itself.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by index (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
// per-dimension sparse/dense annnotations together with a dimension
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
// tensors. These methods should be used exclusively by MLIR
// compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
// tensors. These methods can be used by any external runtime that wants
// to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/SparseTensorRuntime.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include "mlir/ExecutionEngine/SparseTensor/ArithmeticUtils.h"
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
#include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
#include "mlir/ExecutionEngine/SparseTensor/File.h"
#include "mlir/ExecutionEngine/SparseTensor/PermutationRef.h"
#include "mlir/ExecutionEngine/SparseTensor/Storage.h"
#include <cstring>
#include <numeric>
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
//
// Implementation details for public functions, which don't have a good
// place to live in the C++ library this file is wrapping.
//
//===----------------------------------------------------------------------===//
namespace {
/// Wrapper class to avoid memory leakage issues. The `SparseTensorCOO<V>`
/// class provides a standard C++ iterator interface, where the iterator
/// is implemented as per `std::vector`'s iterator. However, for MLIR's
/// usage we need to have an iterator which also holds onto the underlying
/// `SparseTensorCOO<V>` so that it can be freed whenever the iterator
/// is freed.
//
// We name this `SparseTensorIterator` rather than `SparseTensorCOOIterator`
// for future-proofing, since the use of `SparseTensorCOO` is an
// implementation detail that we eventually want to change (e.g., to
// use `SparseTensorEnumerator` directly, rather than constructing the
// intermediate `SparseTensorCOO` at all).
template <typename V>
class SparseTensorIterator final {
public:
/// This ctor requires `coo` to be a non-null pointer to a dynamically
/// allocated object, and takes ownership of that object. Therefore,
/// callers must not free the underlying COO object, since the iterator's
/// dtor will do so.
explicit SparseTensorIterator(const SparseTensorCOO<V> *coo)
: coo(coo), it(coo->begin()), end(coo->end()) {}
~SparseTensorIterator() { delete coo; }
// Disable copy-ctor and copy-assignment, to prevent double-free.
SparseTensorIterator(const SparseTensorIterator<V> &) = delete;
SparseTensorIterator<V> &operator=(const SparseTensorIterator<V> &) = delete;
/// Gets the next element. If there are no remaining elements, then
/// returns nullptr.
const Element<V> *getNext() { return it < end ? &*it++ : nullptr; }
private:
const SparseTensorCOO<V> *const coo; // Owning pointer.
typename SparseTensorCOO<V>::const_iterator it;
const typename SparseTensorCOO<V>::const_iterator end;
};
// TODO: When using this library from MLIR, the `toMLIRSparseTensor`/
// `IMPL_CONVERTTOMLIRSPARSETENSOR` and `fromMLIRSparseTensor`/
// `IMPL_CONVERTFROMMLIRSPARSETENSOR` constructs will be codegened away;
// therefore, these functions are only used by PyTACO, one place in the
// Python integration tests, and possibly by out-of-tree projects.
// This is notable because neither function can be easily generalized
// to handle non-permutations. In particular, while we could adjust
// the functions to take all the arguments they'd need, that would just
// push the problem into client code. So if we want to generalize these
// functions to support non-permutations, we'll need to figure out how
// to do so without putting undue burden on clients.
/// Initializes sparse tensor from an external COO-flavored format.
/// The `rank` argument is both dimension-rank and level-rank, and the
/// `dim2lvl` argument must be a permutation.
/// Used by `IMPL_CONVERTTOMLIRSPARSETENSOR`.
//
// TODO: generalize beyond 64-bit indices.
template <typename V>
static SparseTensorStorage<uint64_t, uint64_t, V> *
toMLIRSparseTensor(uint64_t rank, uint64_t nse, const uint64_t *dimSizes,
const V *values, const uint64_t *dimIndices,
const uint64_t *dim2lvl, const DimLevelType *lvlTypes) {
#ifndef NDEBUG
// Verify that the sparsity values are supported.
// TODO: update this check to match what we actually support.
for (uint64_t i = 0; i < rank; ++i)
if (lvlTypes[i] != DimLevelType::Dense &&
lvlTypes[i] != DimLevelType::Compressed)
MLIR_SPARSETENSOR_FATAL("unsupported level type: %d\n",
static_cast<uint8_t>(lvlTypes[i]));
#endif
// Verify that `dim2lvl` is a permutation of `[0..(rank-1)]`.
// NOTE: The construction of `lvlSizes` and `lvl2dim` don't generalize
// to arbitrary `dim2lvl` mappings. Whereas constructing `lvlInd` from
// `dimInd` does (though the details would have to be updated, just
// like for `IMPL_ADDELT`).
detail::PermutationRef d2l(rank, dim2lvl);
// Convert external format to internal COO.
auto lvlSizes = d2l.pushforward(rank, dimSizes);
auto *lvlCOO = new SparseTensorCOO<V>(lvlSizes, nse);
std::vector<uint64_t> lvlInd(rank);
const uint64_t *dimInd = dimIndices;
for (uint64_t i = 0; i < nse; ++i) {
d2l.pushforward(rank, dimInd, lvlInd.data());
lvlCOO->add(lvlInd, values[i]);
dimInd += rank;
}
// Return sparse tensor storage format as opaque pointer.
auto lvl2dim = d2l.inverse();
auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newFromCOO(
rank, dimSizes, rank, lvlTypes, lvl2dim.data(), *lvlCOO);
delete lvlCOO;
return tensor;
}
/// Converts a sparse tensor to an external COO-flavored format.
/// Used by `IMPL_CONVERTFROMMLIRSPARSETENSOR`.
//
// TODO: Currently, values are copied from SparseTensorStorage to
// SparseTensorCOO, then to the output. We may want to reduce the number
// of copies.
//
// TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions
// compressed
template <typename V>
static void
fromMLIRSparseTensor(const SparseTensorStorage<uint64_t, uint64_t, V> *tensor,
uint64_t *pRank, uint64_t *pNse, uint64_t **pShape,
V **pValues, uint64_t **pIndices) {
assert(tensor && "Received nullptr for tensor");
uint64_t dimRank = tensor->getDimRank();
const auto &dimSizes = tensor->getDimSizes();
std::vector<uint64_t> identityPerm(dimRank);
std::iota(identityPerm.begin(), identityPerm.end(), 0);
SparseTensorCOO<V> *coo =
tensor->toCOO(dimRank, dimSizes.data(), dimRank, identityPerm.data());
const std::vector<Element<V>> &elements = coo->getElements();
uint64_t nse = elements.size();
const auto &cooSizes = coo->getDimSizes();
assert(cooSizes.size() == dimRank && "Rank mismatch");
uint64_t *shape = new uint64_t[dimRank];
std::memcpy((void *)shape, (const void *)cooSizes.data(),
sizeof(uint64_t) * dimRank);
V *values = new V[nse];
uint64_t *indices = new uint64_t[dimRank * nse];
for (uint64_t i = 0, base = 0; i < nse; ++i) {
values[i] = elements[i].value;
for (uint64_t d = 0; d < dimRank; ++d)
indices[base + d] = elements[i].indices[d];
base += dimRank;
}
delete coo;
*pRank = dimRank;
*pNse = nse;
*pShape = shape;
*pValues = values;
*pIndices = indices;
}
//===----------------------------------------------------------------------===//
//
// Utilities for manipulating `StridedMemRefType`.
//
//===----------------------------------------------------------------------===//
// We shouldn't need to use `detail::safelyEQ` here since the `1` is a literal.
#define ASSERT_NO_STRIDE(MEMREF) \
do { \
assert((MEMREF) && "Memref is nullptr"); \
assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride"); \
} while (false)
// All our functions use `uint64_t` for ranks, but `StridedMemRefType::sizes`
// uses `int64_t` on some platforms. So we explicitly cast this lookup to
// ensure we get a consistent type, and we use `checkOverflowCast` rather
// than `static_cast` just to be extremely sure that the casting can't
// go awry. (The cast should aways be safe since (1) sizes should never
// be negative, and (2) the maximum `int64_t` is smaller than the maximum
// `uint64_t`. But it's better to be safe than sorry.)
#define MEMREF_GET_USIZE(MEMREF) \
detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])
#define ASSERT_USIZE_EQ(MEMREF, SZ) \
assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) && \
"Memref size mismatch")
#define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)
// We make this a function rather than a macro mainly for type safety
// reasons. This function does not modify the vector, but it cannot
// be marked `const` because it is stored into the non-`const` memref.
template <typename T>
static void vectorToMemref(std::vector<T> &v, StridedMemRefType<T, 1> &ref) {
ref.basePtr = ref.data = v.data();
ref.offset = 0;
using SizeT = typename std::remove_reference_t<decltype(ref.sizes[0])>;
ref.sizes[0] = detail::checkOverflowCast<SizeT>(v.size());
ref.strides[0] = 1;
}
} // anonymous namespace
extern "C" {
//===----------------------------------------------------------------------===//
//
// Public functions which operate on MLIR buffers (memrefs) to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
#define CASE(p, i, v, P, I, V) \
if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \
switch (action) { \
case Action::kEmpty: \
return SparseTensorStorage<P, I, V>::newEmpty( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim); \
case Action::kFromFile: { \
char *filename = static_cast<char *>(ptr); \
return openSparseTensor<P, I, V>(dimRank, dimSizes, lvlRank, lvlTypes, \
lvl2dim, dim2lvl, filename, v); \
} \
case Action::kFromCOO: { \
assert(ptr && "Received nullptr for SparseTensorCOO object"); \
auto &coo = *static_cast<SparseTensorCOO<V> *>(ptr); \
return SparseTensorStorage<P, I, V>::newFromCOO( \
dimRank, dimSizes, lvlRank, lvlTypes, lvl2dim, coo); \
} \
case Action::kSparseToSparse: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(ptr); \
return SparseTensorStorage<P, I, V>::newFromSparseTensor( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim, dimRank, \
dim2lvl, tensor); \
} \
case Action::kEmptyCOO: \
return new SparseTensorCOO<V>(lvlRank, lvlSizes); \
case Action::kToCOO: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorage<P, I, V> *>(ptr); \
return tensor.toCOO(lvlRank, lvlSizes, dimRank, dim2lvl); \
} \
case Action::kToIterator: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorage<P, I, V> *>(ptr); \
auto *coo = tensor.toCOO(lvlRank, lvlSizes, dimRank, dim2lvl); \
return new SparseTensorIterator<V>(coo); \
} \
} \
MLIR_SPARSETENSOR_FATAL("unknown action: %d\n", \
static_cast<uint32_t>(action)); \
}
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_type, uint64_t>::value,
"Expected index_type == uint64_t");
// TODO: this swiss-army-knife should be split up into separate functions
// for each action, since the various actions don't agree on (1) whether
// the first two arguments are "sizes" vs "shapes", (2) whether the "lvl"
// arguments are actually storage-levels vs target tensor-dimensions,
// (3) whether all the arguments are actually used/required.
void *_mlir_ciface_newSparseTensor( // NOLINT
StridedMemRefType<index_type, 1> *dimSizesRef,
StridedMemRefType<index_type, 1> *lvlSizesRef,
StridedMemRefType<DimLevelType, 1> *lvlTypesRef,
StridedMemRefType<index_type, 1> *lvl2dimRef,
StridedMemRefType<index_type, 1> *dim2lvlRef, OverheadType ptrTp,
OverheadType indTp, PrimaryType valTp, Action action, void *ptr) {
ASSERT_NO_STRIDE(dimSizesRef);
ASSERT_NO_STRIDE(lvlSizesRef);
ASSERT_NO_STRIDE(lvlTypesRef);
ASSERT_NO_STRIDE(lvl2dimRef);
ASSERT_NO_STRIDE(dim2lvlRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
ASSERT_USIZE_EQ(dim2lvlRef, dimRank);
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
ASSERT_USIZE_EQ(lvl2dimRef, lvlRank);
const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
const DimLevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (ptrTp == OverheadType::kIndex)
ptrTp = OverheadType::kU64;
if (indTp == OverheadType::kIndex)
indTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
uint64_t, double);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
uint32_t, double);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
uint16_t, double);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
uint8_t, double);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
uint64_t, double);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
uint32_t, double);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
uint16_t, double);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
uint8_t, double);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
uint64_t, double);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
uint32_t, double);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
uint16_t, double);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
uint8_t, double);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
uint64_t, double);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
uint32_t, double);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
uint16_t, double);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
uint64_t, float);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
uint32_t, float);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
uint16_t, float);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
uint8_t, float);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
uint64_t, float);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
uint32_t, float);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
uint16_t, float);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
uint8_t, float);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
uint64_t, float);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
uint32_t, float);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
uint16_t, float);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
uint8_t, float);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
uint64_t, float);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
uint32_t, float);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
uint16_t, float);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
uint8_t, float);
// Two-byte floats with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
// Complex matrices with wide overhead.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);
// Unsupported case (add above if needed).
// TODO: better pretty-printing of enum values!
MLIR_SPARSETENSOR_FATAL(
"unsupported combination of types: <P=%d, I=%d, V=%d>\n",
static_cast<int>(ptrTp), static_cast<int>(indTp),
static_cast<int>(valTp));
}
#undef CASE
#undef CASE_SECSAME
#define IMPL_SPARSEVALUES(VNAME, V) \
void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \
void *tensor) { \
assert(ref &&tensor); \
std::vector<V> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \
assert(v); \
vectorToMemref(*v, *ref); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
#undef IMPL_SPARSEVALUES
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
index_type d) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \
assert(v); \
vectorToMemref(*v, *ref); \
}
#define IMPL_SPARSEPOINTERS(PNAME, P) \
IMPL_GETOVERHEAD(sparsePointers##PNAME, P, getPointers)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOINTERS)
#undef IMPL_SPARSEPOINTERS
#define IMPL_SPARSEINDICES(INAME, I) \
IMPL_GETOVERHEAD(sparseIndices##INAME, I, getIndices)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEINDICES)
#undef IMPL_SPARSEINDICES
#undef IMPL_GETOVERHEAD
// TODO: while this API design will work for arbitrary dim2lvl mappings,
// we should probably move the `dimInd`-to-`lvlInd` computation into codegen
// (since that could enable optimizations to remove the intermediate memref).
#define IMPL_ADDELT(VNAME, V) \
void *_mlir_ciface_addElt##VNAME( \
void *lvlCOO, StridedMemRefType<V, 0> *vref, \
StridedMemRefType<index_type, 1> *dimIndRef, \
StridedMemRefType<index_type, 1> *dim2lvlRef) { \
assert(lvlCOO &&vref); \
ASSERT_NO_STRIDE(dimIndRef); \
ASSERT_NO_STRIDE(dim2lvlRef); \
const uint64_t rank = MEMREF_GET_USIZE(dimIndRef); \
ASSERT_USIZE_EQ(dim2lvlRef, rank); \
const index_type *dimInd = MEMREF_GET_PAYLOAD(dimIndRef); \
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
std::vector<index_type> lvlInd(rank); \
for (uint64_t d = 0; d < rank; ++d) \
lvlInd[dim2lvl[d]] = dimInd[d]; \
V *value = MEMREF_GET_PAYLOAD(vref); \
static_cast<SparseTensorCOO<V> *>(lvlCOO)->add(lvlInd, *value); \
return lvlCOO; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_ADDELT)
#undef IMPL_ADDELT
#define IMPL_GETNEXT(VNAME, V) \
bool _mlir_ciface_getNext##VNAME(void *iter, \
StridedMemRefType<index_type, 1> *iref, \
StridedMemRefType<V, 0> *vref) { \
assert(iter &&vref); \
ASSERT_NO_STRIDE(iref); \
index_type *indx = MEMREF_GET_PAYLOAD(iref); \
V *value = MEMREF_GET_PAYLOAD(vref); \
const uint64_t isize = MEMREF_GET_USIZE(iref); \
const Element<V> *elem = \
static_cast<SparseTensorIterator<V> *>(iter)->getNext(); \
if (elem == nullptr) \
return false; \
for (uint64_t r = 0; r < isize; r++) \
indx[r] = elem->indices[r]; \
*value = elem->value; \
return true; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_GETNEXT)
#undef IMPL_GETNEXT
#define IMPL_LEXINSERT(VNAME, V) \
void _mlir_ciface_lexInsert##VNAME(void *tensor, \
StridedMemRefType<index_type, 1> *cref, \
StridedMemRefType<V, 0> *vref) { \
assert(tensor &&vref); \
ASSERT_NO_STRIDE(cref); \
index_type *cursor = MEMREF_GET_PAYLOAD(cref); \
assert(cursor); \
V *value = MEMREF_GET_PAYLOAD(vref); \
static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, *value); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_LEXINSERT)
#undef IMPL_LEXINSERT
#define IMPL_EXPINSERT(VNAME, V) \
void _mlir_ciface_expInsert##VNAME( \
void *tensor, StridedMemRefType<index_type, 1> *cref, \
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
StridedMemRefType<index_type, 1> *aref, index_type count) { \
assert(tensor); \
ASSERT_NO_STRIDE(cref); \
ASSERT_NO_STRIDE(vref); \
ASSERT_NO_STRIDE(fref); \
ASSERT_NO_STRIDE(aref); \
ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref)); \
index_type *cursor = MEMREF_GET_PAYLOAD(cref); \
V *values = MEMREF_GET_PAYLOAD(vref); \
bool *filled = MEMREF_GET_PAYLOAD(fref); \
index_type *added = MEMREF_GET_PAYLOAD(aref); \
static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \
cursor, values, filled, added, count); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_EXPINSERT)
#undef IMPL_EXPINSERT
void _mlir_ciface_getSparseTensorReaderDimSizes(
void *p, StridedMemRefType<index_type, 1> *dref) {
assert(p);
ASSERT_NO_STRIDE(dref);
index_type *dimSizes = MEMREF_GET_PAYLOAD(dref);
SparseTensorReader &file = *static_cast<SparseTensorReader *>(p);
const index_type *sizes = file.getDimSizes();
index_type rank = file.getRank();
for (index_type r = 0; r < rank; ++r)
dimSizes[r] = sizes[r];
}
#define IMPL_GETNEXT(VNAME, V) \
void _mlir_ciface_getSparseTensorReaderNext##VNAME( \
void *p, StridedMemRefType<index_type, 1> *iref, \
StridedMemRefType<V, 0> *vref) { \
assert(p &&vref); \
ASSERT_NO_STRIDE(iref); \
index_type *indices = MEMREF_GET_PAYLOAD(iref); \
SparseTensorReader *stfile = static_cast<SparseTensorReader *>(p); \
index_type rank = stfile->getRank(); \
V *value = MEMREF_GET_PAYLOAD(vref); \
*value = stfile->readCOOElement<V>(rank, indices); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_GETNEXT)
#undef IMPL_GETNEXT
void _mlir_ciface_outSparseTensorWriterMetaData(
void *p, index_type rank, index_type nnz,
StridedMemRefType<index_type, 1> *dref) {
assert(p);
ASSERT_NO_STRIDE(dref);
assert(rank != 0);
index_type *dimSizes = MEMREF_GET_PAYLOAD(dref);
SparseTensorWriter &file = *static_cast<SparseTensorWriter *>(p);
file << rank << " " << nnz << std::endl;
for (index_type r = 0; r < rank - 1; ++r)
file << dimSizes[r] << " ";
file << dimSizes[rank - 1] << std::endl;
}
#define IMPL_OUTNEXT(VNAME, V) \
void _mlir_ciface_outSparseTensorWriterNext##VNAME( \
void *p, index_type rank, StridedMemRefType<index_type, 1> *iref, \
StridedMemRefType<V, 0> *vref) { \
assert(p &&vref); \
ASSERT_NO_STRIDE(iref); \
index_type *indices = MEMREF_GET_PAYLOAD(iref); \
SparseTensorWriter &file = *static_cast<SparseTensorWriter *>(p); \
for (index_type r = 0; r < rank; ++r) \
file << (indices[r] + 1) << " "; \
V *value = MEMREF_GET_PAYLOAD(vref); \
file << *value << std::endl; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
#undef IMPL_OUTNEXT
//===----------------------------------------------------------------------===//
//
// Public functions which accept only C-style data structures to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
index_type sparseLvlSize(void *tensor, index_type x) {
return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(x);
}
void endInsert(void *tensor) {
return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
}
#define IMPL_OUTSPARSETENSOR(VNAME, V) \
void outSparseTensor##VNAME(void *coo, void *dest, bool sort) { \
assert(coo && "Got nullptr for COO object"); \
auto &coo_ = *static_cast<SparseTensorCOO<V> *>(coo); \
if (sort) \
coo_.sort(); \
return writeExtFROSTT(coo_, static_cast<char *>(dest)); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTSPARSETENSOR)
#undef IMPL_OUTSPARSETENSOR
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
#define IMPL_DELCOO(VNAME, V) \
void delSparseTensorCOO##VNAME(void *coo) { \
delete static_cast<SparseTensorCOO<V> *>(coo); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_DELCOO)
#undef IMPL_DELCOO
#define IMPL_DELITER(VNAME, V) \
void delSparseTensorIterator##VNAME(void *iter) { \
delete static_cast<SparseTensorIterator<V> *>(iter); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_DELITER)
#undef IMPL_DELITER
char *getTensorFilename(index_type id) {
char var[80];
sprintf(var, "TENSOR%" PRIu64, id);
char *env = getenv(var);
if (!env)
MLIR_SPARSETENSOR_FATAL("Environment variable %s is not set\n", var);
return env;
}
void readSparseTensorShape(char *filename, std::vector<uint64_t> *out) {
assert(out && "Received nullptr for out-parameter");
SparseTensorReader stfile(filename);
stfile.openFile();
stfile.readHeader();
stfile.closeFile();
const uint64_t rank = stfile.getRank();
const uint64_t *dimSizes = stfile.getDimSizes();
out->reserve(rank);
out->assign(dimSizes, dimSizes + rank);
}
// We can't use `static_cast` here because `DimLevelType` is an enum-class.
#define IMPL_CONVERTTOMLIRSPARSETENSOR(VNAME, V) \
void *convertToMLIRSparseTensor##VNAME( \
uint64_t rank, uint64_t nse, uint64_t *shape, V *values, \
uint64_t *indices, uint64_t *perm, uint8_t *sparse) { \
return toMLIRSparseTensor<V>(rank, nse, shape, values, indices, perm, \
reinterpret_cast<DimLevelType *>(sparse)); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_CONVERTTOMLIRSPARSETENSOR)
#undef IMPL_CONVERTTOMLIRSPARSETENSOR
#define IMPL_CONVERTFROMMLIRSPARSETENSOR(VNAME, V) \
void convertFromMLIRSparseTensor##VNAME(void *tensor, uint64_t *pRank, \
uint64_t *pNse, uint64_t **pShape, \
V **pValues, uint64_t **pIndices) { \
fromMLIRSparseTensor<V>( \
static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor), \
pRank, pNse, pShape, pValues, pIndices); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_CONVERTFROMMLIRSPARSETENSOR)
#undef IMPL_CONVERTFROMMLIRSPARSETENSOR
void *createSparseTensorReader(char *filename) {
SparseTensorReader *stfile = new SparseTensorReader(filename);
stfile->openFile();
stfile->readHeader();
return static_cast<void *>(stfile);
}
index_type getSparseTensorReaderRank(void *p) {
return static_cast<SparseTensorReader *>(p)->getRank();
}
bool getSparseTensorReaderIsSymmetric(void *p) {
return static_cast<SparseTensorReader *>(p)->isSymmetric();
}
index_type getSparseTensorReaderNNZ(void *p) {
return static_cast<SparseTensorReader *>(p)->getNNZ();
}
index_type getSparseTensorReaderDimSize(void *p, index_type d) {
return static_cast<SparseTensorReader *>(p)->getDimSize(d);
}
void delSparseTensorReader(void *p) {
delete static_cast<SparseTensorReader *>(p);
}
void *createSparseTensorWriter(char *filename) {
SparseTensorWriter *file =
(filename[0] == 0) ? &std::cout : new std::ofstream(filename);
*file << "# extended FROSTT format\n";
return static_cast<void *>(file);
}
void delSparseTensorWriter(void *p) {
SparseTensorWriter *file = static_cast<SparseTensorWriter *>(p);
file->flush();
assert(file->good());
if (file != &std::cout)
delete file;
}
} // extern "C"
#undef MEMREF_GET_PAYLOAD
#undef ASSERT_USIZE_EQ
#undef MEMREF_GET_USIZE
#undef ASSERT_NO_STRIDE
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS