forked from OSchip/llvm-project
144 lines
5.7 KiB
C++
144 lines
5.7 KiB
C++
//===-- Single-precision cos function -------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "src/math/cosf.h"
|
|
#include "sincosf_utils.h"
|
|
#include "src/__support/FPUtil/BasicOperations.h"
|
|
#include "src/__support/FPUtil/FEnvImpl.h"
|
|
#include "src/__support/FPUtil/FPBits.h"
|
|
#include "src/__support/FPUtil/except_value_utils.h"
|
|
#include "src/__support/FPUtil/multiply_add.h"
|
|
#include "src/__support/common.h"
|
|
|
|
#include <errno.h>
|
|
|
|
namespace __llvm_libc {
|
|
|
|
// Exceptional cases for cosf.
|
|
static constexpr int COSF_EXCEPTS = 6;
|
|
|
|
static constexpr fputil::ExceptionalValues<float, COSF_EXCEPTS> CosfExcepts{
|
|
/* inputs */ {
|
|
0x55325019, // x = 0x1.64a032p43
|
|
0x5922aa80, // x = 0x1.4555p51
|
|
0x5aa4542c, // x = 0x1.48a858p54
|
|
0x5f18b878, // x = 0x1.3170fp63
|
|
0x6115cb11, // x = 0x1.2b9622p67
|
|
0x7beef5ef, // x = 0x1.ddebdep120
|
|
},
|
|
/* outputs (RZ, RU offset, RD offset, RN offset) */
|
|
{
|
|
{0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
|
|
{0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
|
|
{0x3efa40a4, 1, 0, 0}, // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ)
|
|
{0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
|
|
{0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
|
|
{0x3f08a21c, 1, 0,
|
|
0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
|
|
}};
|
|
|
|
LLVM_LIBC_FUNCTION(float, cosf, (float x)) {
|
|
using FPBits = typename fputil::FPBits<float>;
|
|
FPBits xbits(x);
|
|
xbits.set_sign(false);
|
|
|
|
uint32_t x_abs = xbits.uintval();
|
|
double xd = static_cast<double>(xbits.get_val());
|
|
|
|
// Range reduction:
|
|
// For |x| > pi/16, we perform range reduction as follows:
|
|
// Find k and y such that:
|
|
// x = (k + y) * pi/32
|
|
// k is an integer
|
|
// |y| < 0.5
|
|
// For small range (|x| < 2^45 when FMA instructions are available, 2^22
|
|
// otherwise), this is done by performing:
|
|
// k = round(x * 32/pi)
|
|
// y = x * 32/pi - k
|
|
// For large range, we will omit all the higher parts of 16/pi such that the
|
|
// least significant bits of their full products with x are larger than 63,
|
|
// since cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
|
|
//
|
|
// When FMA instructions are not available, we store the digits of 32/pi in
|
|
// chunks of 28-bit precision. This will make sure that the products:
|
|
// x * THIRTYTWO_OVER_PI_28[i] are all exact.
|
|
// When FMA instructions are available, we simply store the digits of 32/pi in
|
|
// chunks of doubles (53-bit of precision).
|
|
// So when multiplying by the largest values of single precision, the
|
|
// resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the
|
|
// worst-case analysis of range reduction, |y| >= 2^-38, so this should give
|
|
// us more than 40 bits of accuracy. For the worst-case estimation of range
|
|
// reduction, see for instances:
|
|
// Elementary Functions by J-M. Muller, Chapter 11,
|
|
// Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
|
|
// Chapter 10.2.
|
|
//
|
|
// Once k and y are computed, we then deduce the answer by the cosine of sum
|
|
// formula:
|
|
// cos(x) = cos((k + y)*pi/32)
|
|
// = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
|
|
// The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
|
|
// and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
|
|
// computed using degree-7 and degree-6 minimax polynomials generated by
|
|
// Sollya respectively.
|
|
|
|
// |x| < 0x1.0p-12f
|
|
if (unlikely(x_abs < 0x3980'0000U)) {
|
|
// When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1
|
|
// is:
|
|
// |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
|
|
// So the correctly rounded values of cos(x) are:
|
|
// = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
|
|
// = 1 otherwise.
|
|
// To simplify the rounding decision and make it more efficient and to
|
|
// prevent compiler to perform constant folding, we use
|
|
// fma(x, -2^-25, 1) instead.
|
|
// Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we
|
|
// do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when
|
|
// |x| < 2^-125. For targets without FMA instructions, we simply use
|
|
// double for intermediate results as it is more efficient than using an
|
|
// emulated version of FMA.
|
|
#if defined(LIBC_TARGET_HAS_FMA)
|
|
return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f);
|
|
#else
|
|
return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0));
|
|
#endif // LIBC_TARGET_HAS_FMA
|
|
}
|
|
|
|
using ExceptChecker = typename fputil::ExceptionChecker<float, COSF_EXCEPTS>;
|
|
{
|
|
float result;
|
|
if (ExceptChecker::check_odd_func(CosfExcepts, x_abs, false, result))
|
|
return result;
|
|
}
|
|
|
|
// x is inf or nan.
|
|
if (unlikely(x_abs >= 0x7f80'0000U)) {
|
|
if (x_abs == 0x7f80'0000U) {
|
|
errno = EDOM;
|
|
fputil::set_except(FE_INVALID);
|
|
}
|
|
return x +
|
|
FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
|
|
}
|
|
|
|
// Combine the results with the sine of sum formula:
|
|
// cos(x) = cos((k + y)*pi/32)
|
|
// = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
|
|
// = cosm1_y * cos_k + sin_y * sin_k
|
|
// = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
|
|
double sin_k, cos_k, sin_y, cosm1_y;
|
|
|
|
sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);
|
|
|
|
return fputil::multiply_add(sin_y, -sin_k,
|
|
fputil::multiply_add(cosm1_y, cos_k, cos_k));
|
|
}
|
|
|
|
} // namespace __llvm_libc
|