forked from OSchip/llvm-project
3365 lines
127 KiB
C++
3365 lines
127 KiB
C++
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines RangeConstraintManager, a class that tracks simple
|
|
// equality and inequality constraints on symbolic values of ProgramState.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/JsonSupport.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
// This class can be extended with other tables which will help to reason
|
|
// about ranges more precisely.
|
|
class OperatorRelationsTable {
|
|
static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
|
|
BO_GE < BO_EQ && BO_EQ < BO_NE,
|
|
"This class relies on operators order. Rework it otherwise.");
|
|
|
|
public:
|
|
enum TriStateKind {
|
|
False = 0,
|
|
True,
|
|
Unknown,
|
|
};
|
|
|
|
private:
|
|
// CmpOpTable holds states which represent the corresponding range for
|
|
// branching an exploded graph. We can reason about the branch if there is
|
|
// a previously known fact of the existence of a comparison expression with
|
|
// operands used in the current expression.
|
|
// E.g. assuming (x < y) is true that means (x != y) is surely true.
|
|
// if (x previous_operation y) // < | != | >
|
|
// if (x operation y) // != | > | <
|
|
// tristate // True | Unknown | False
|
|
//
|
|
// CmpOpTable represents next:
|
|
// __|< |> |<=|>=|==|!=|UnknownX2|
|
|
// < |1 |0 |* |0 |0 |* |1 |
|
|
// > |0 |1 |0 |* |0 |* |1 |
|
|
// <=|1 |0 |1 |* |1 |* |0 |
|
|
// >=|0 |1 |* |1 |1 |* |0 |
|
|
// ==|0 |0 |* |* |1 |0 |1 |
|
|
// !=|1 |1 |* |* |0 |1 |0 |
|
|
//
|
|
// Columns stands for a previous operator.
|
|
// Rows stands for a current operator.
|
|
// Each row has exactly two `Unknown` cases.
|
|
// UnknownX2 means that both `Unknown` previous operators are met in code,
|
|
// and there is a special column for that, for example:
|
|
// if (x >= y)
|
|
// if (x != y)
|
|
// if (x <= y)
|
|
// False only
|
|
static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
|
|
const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
|
|
// < > <= >= == != UnknownX2
|
|
{True, False, Unknown, False, False, Unknown, True}, // <
|
|
{False, True, False, Unknown, False, Unknown, True}, // >
|
|
{True, False, True, Unknown, True, Unknown, False}, // <=
|
|
{False, True, Unknown, True, True, Unknown, False}, // >=
|
|
{False, False, Unknown, Unknown, True, False, True}, // ==
|
|
{True, True, Unknown, Unknown, False, True, False}, // !=
|
|
};
|
|
|
|
static size_t getIndexFromOp(BinaryOperatorKind OP) {
|
|
return static_cast<size_t>(OP - BO_LT);
|
|
}
|
|
|
|
public:
|
|
constexpr size_t getCmpOpCount() const { return CmpOpCount; }
|
|
|
|
static BinaryOperatorKind getOpFromIndex(size_t Index) {
|
|
return static_cast<BinaryOperatorKind>(Index + BO_LT);
|
|
}
|
|
|
|
TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
|
|
BinaryOperatorKind QueriedOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
|
|
}
|
|
|
|
TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RangeSet implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RangeSet::ContainerType RangeSet::Factory::EmptySet{};
|
|
|
|
RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) {
|
|
ContainerType Result;
|
|
Result.reserve(LHS.size() + RHS.size());
|
|
std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(),
|
|
std::back_inserter(Result));
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) {
|
|
ContainerType Result;
|
|
Result.reserve(Original.size() + 1);
|
|
|
|
const_iterator Lower = llvm::lower_bound(Original, Element);
|
|
Result.insert(Result.end(), Original.begin(), Lower);
|
|
Result.push_back(Element);
|
|
Result.insert(Result.end(), Lower, Original.end());
|
|
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) {
|
|
return add(Original, Range(Point));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) {
|
|
ContainerType Result = unite(*LHS.Impl, *RHS.Impl);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) {
|
|
ContainerType Result;
|
|
Result.push_back(R);
|
|
Result = unite(*Original.Impl, Result);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) {
|
|
return unite(Original, Range(ValueFactory.getValue(Point)));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From,
|
|
llvm::APSInt To) {
|
|
return unite(Original,
|
|
Range(ValueFactory.getValue(From), ValueFactory.getValue(To)));
|
|
}
|
|
|
|
template <typename T>
|
|
void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) {
|
|
std::swap(First, Second);
|
|
std::swap(FirstEnd, SecondEnd);
|
|
}
|
|
|
|
RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS,
|
|
const ContainerType &RHS) {
|
|
if (LHS.empty())
|
|
return RHS;
|
|
if (RHS.empty())
|
|
return LHS;
|
|
|
|
using llvm::APSInt;
|
|
using iterator = ContainerType::const_iterator;
|
|
|
|
iterator First = LHS.begin();
|
|
iterator FirstEnd = LHS.end();
|
|
iterator Second = RHS.begin();
|
|
iterator SecondEnd = RHS.end();
|
|
APSIntType Ty = APSIntType(First->From());
|
|
const APSInt Min = Ty.getMinValue();
|
|
|
|
// Handle a corner case first when both range sets start from MIN.
|
|
// This helps to avoid complicated conditions below. Specifically, this
|
|
// particular check for `MIN` is not needed in the loop below every time
|
|
// when we do `Second->From() - One` operation.
|
|
if (Min == First->From() && Min == Second->From()) {
|
|
if (First->To() > Second->To()) {
|
|
// [ First ]--->
|
|
// [ Second ]----->
|
|
// MIN^
|
|
// The Second range is entirely inside the First one.
|
|
|
|
// Check if Second is the last in its RangeSet.
|
|
if (++Second == SecondEnd)
|
|
// [ First ]--[ First + 1 ]--->
|
|
// [ Second ]--------------------->
|
|
// MIN^
|
|
// The Union is equal to First's RangeSet.
|
|
return LHS;
|
|
} else {
|
|
// case 1: [ First ]----->
|
|
// case 2: [ First ]--->
|
|
// [ Second ]--->
|
|
// MIN^
|
|
// The First range is entirely inside or equal to the Second one.
|
|
|
|
// Check if First is the last in its RangeSet.
|
|
if (++First == FirstEnd)
|
|
// [ First ]----------------------->
|
|
// [ Second ]--[ Second + 1 ]---->
|
|
// MIN^
|
|
// The Union is equal to Second's RangeSet.
|
|
return RHS;
|
|
}
|
|
}
|
|
|
|
const APSInt One = Ty.getValue(1);
|
|
ContainerType Result;
|
|
|
|
// This is called when there are no ranges left in one of the ranges.
|
|
// Append the rest of the ranges from another range set to the Result
|
|
// and return with that.
|
|
const auto AppendTheRest = [&Result](iterator I, iterator E) {
|
|
Result.append(I, E);
|
|
return Result;
|
|
};
|
|
|
|
while (true) {
|
|
// We want to keep the following invariant at all times:
|
|
// ---[ First ------>
|
|
// -----[ Second --->
|
|
if (First->From() > Second->From())
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
|
|
// The Union definitely starts with First->From().
|
|
// ----------[ First ------>
|
|
// ------------[ Second --->
|
|
// ----------[ Union ------>
|
|
// UnionStart^
|
|
const llvm::APSInt &UnionStart = First->From();
|
|
|
|
// Loop where the invariant holds.
|
|
while (true) {
|
|
// Skip all enclosed ranges.
|
|
// ---[ First ]--->
|
|
// -----[ Second ]--[ Second + 1 ]--[ Second + N ]----->
|
|
while (First->To() >= Second->To()) {
|
|
// Check if Second is the last in its RangeSet.
|
|
if (++Second == SecondEnd) {
|
|
// Append the Union.
|
|
// ---[ Union ]--->
|
|
// -----[ Second ]----->
|
|
// --------[ First ]--->
|
|
// UnionEnd^
|
|
Result.emplace_back(UnionStart, First->To());
|
|
// ---[ Union ]----------------->
|
|
// --------------[ First + 1]--->
|
|
// Append all remaining ranges from the First's RangeSet.
|
|
return AppendTheRest(++First, FirstEnd);
|
|
}
|
|
}
|
|
|
|
// Check if First and Second are disjoint. It means that we find
|
|
// the end of the Union. Exit the loop and append the Union.
|
|
// ---[ First ]=------------->
|
|
// ------------=[ Second ]--->
|
|
// ----MinusOne^
|
|
if (First->To() < Second->From() - One)
|
|
break;
|
|
|
|
// First is entirely inside the Union. Go next.
|
|
// ---[ Union ----------->
|
|
// ---- [ First ]-------->
|
|
// -------[ Second ]----->
|
|
// Check if First is the last in its RangeSet.
|
|
if (++First == FirstEnd) {
|
|
// Append the Union.
|
|
// ---[ Union ]--->
|
|
// -----[ First ]------->
|
|
// --------[ Second ]--->
|
|
// UnionEnd^
|
|
Result.emplace_back(UnionStart, Second->To());
|
|
// ---[ Union ]------------------>
|
|
// --------------[ Second + 1]--->
|
|
// Append all remaining ranges from the Second's RangeSet.
|
|
return AppendTheRest(++Second, SecondEnd);
|
|
}
|
|
|
|
// We know that we are at one of the two cases:
|
|
// case 1: --[ First ]--------->
|
|
// case 2: ----[ First ]------->
|
|
// --------[ Second ]---------->
|
|
// In both cases First starts after Second->From().
|
|
// Make sure that the loop invariant holds.
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
}
|
|
|
|
// Here First and Second are disjoint.
|
|
// Append the Union.
|
|
// ---[ Union ]--------------->
|
|
// -----------------[ Second ]--->
|
|
// ------[ First ]--------------->
|
|
// UnionEnd^
|
|
Result.emplace_back(UnionStart, First->To());
|
|
|
|
// Check if First is the last in its RangeSet.
|
|
if (++First == FirstEnd)
|
|
// ---[ Union ]--------------->
|
|
// --------------[ Second ]--->
|
|
// Append all remaining ranges from the Second's RangeSet.
|
|
return AppendTheRest(Second, SecondEnd);
|
|
}
|
|
|
|
llvm_unreachable("Normally, we should not reach here");
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::getRangeSet(Range From) {
|
|
ContainerType Result;
|
|
Result.push_back(From);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) {
|
|
llvm::FoldingSetNodeID ID;
|
|
void *InsertPos;
|
|
|
|
From.Profile(ID);
|
|
ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!Result) {
|
|
// It is cheaper to fully construct the resulting range on stack
|
|
// and move it to the freshly allocated buffer if we don't have
|
|
// a set like this already.
|
|
Result = construct(std::move(From));
|
|
Cache.InsertNode(Result, InsertPos);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) {
|
|
void *Buffer = Arena.Allocate();
|
|
return new (Buffer) ContainerType(std::move(From));
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMinValue() const {
|
|
assert(!isEmpty());
|
|
return begin()->From();
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMaxValue() const {
|
|
assert(!isEmpty());
|
|
return std::prev(end())->To();
|
|
}
|
|
|
|
bool clang::ento::RangeSet::isUnsigned() const {
|
|
assert(!isEmpty());
|
|
return begin()->From().isUnsigned();
|
|
}
|
|
|
|
uint32_t clang::ento::RangeSet::getBitWidth() const {
|
|
assert(!isEmpty());
|
|
return begin()->From().getBitWidth();
|
|
}
|
|
|
|
APSIntType clang::ento::RangeSet::getAPSIntType() const {
|
|
assert(!isEmpty());
|
|
return APSIntType(begin()->From());
|
|
}
|
|
|
|
bool RangeSet::containsImpl(llvm::APSInt &Point) const {
|
|
if (isEmpty() || !pin(Point))
|
|
return false;
|
|
|
|
Range Dummy(Point);
|
|
const_iterator It = llvm::upper_bound(*this, Dummy);
|
|
if (It == begin())
|
|
return false;
|
|
|
|
return std::prev(It)->Includes(Point);
|
|
}
|
|
|
|
bool RangeSet::pin(llvm::APSInt &Point) const {
|
|
APSIntType Type(getMinValue());
|
|
if (Type.testInRange(Point, true) != APSIntType::RTR_Within)
|
|
return false;
|
|
|
|
Type.apply(Point);
|
|
return true;
|
|
}
|
|
|
|
bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
|
|
// This function has nine cases, the cartesian product of range-testing
|
|
// both the upper and lower bounds against the symbol's type.
|
|
// Each case requires a different pinning operation.
|
|
// The function returns false if the described range is entirely outside
|
|
// the range of values for the associated symbol.
|
|
APSIntType Type(getMinValue());
|
|
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
|
|
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
|
|
|
|
switch (LowerTest) {
|
|
case APSIntType::RTR_Below:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts below what's possible but ends within it. Pin.
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range spans all possible values for the symbol. Pin.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps around, but all lower values are not possible.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range may or may not wrap around, but both limits are valid.
|
|
Type.apply(Lower);
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range starts within what's possible but ends above it. Pin.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps but is outside the symbol's set of possible values.
|
|
return false;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts above what's possible but ends within it (wrap).
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower,
|
|
llvm::APSInt Upper) {
|
|
if (What.isEmpty() || !What.pin(Lower, Upper))
|
|
return getEmptySet();
|
|
|
|
ContainerType DummyContainer;
|
|
|
|
if (Lower <= Upper) {
|
|
// [Lower, Upper] is a regular range.
|
|
//
|
|
// Shortcut: check that there is even a possibility of the intersection
|
|
// by checking the two following situations:
|
|
//
|
|
// <---[ What ]---[------]------>
|
|
// Lower Upper
|
|
// -or-
|
|
// <----[------]----[ What ]---->
|
|
// Lower Upper
|
|
if (What.getMaxValue() < Lower || Upper < What.getMinValue())
|
|
return getEmptySet();
|
|
|
|
DummyContainer.push_back(
|
|
Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper)));
|
|
} else {
|
|
// [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX]
|
|
//
|
|
// Shortcut: check that there is even a possibility of the intersection
|
|
// by checking the following situation:
|
|
//
|
|
// <------]---[ What ]---[------>
|
|
// Upper Lower
|
|
if (What.getMaxValue() < Lower && Upper < What.getMinValue())
|
|
return getEmptySet();
|
|
|
|
DummyContainer.push_back(
|
|
Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper)));
|
|
DummyContainer.push_back(
|
|
Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower)));
|
|
}
|
|
|
|
return intersect(*What.Impl, DummyContainer);
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS,
|
|
const RangeSet::ContainerType &RHS) {
|
|
ContainerType Result;
|
|
Result.reserve(std::max(LHS.size(), RHS.size()));
|
|
|
|
const_iterator First = LHS.begin(), Second = RHS.begin(),
|
|
FirstEnd = LHS.end(), SecondEnd = RHS.end();
|
|
|
|
// If we ran out of ranges in one set, but not in the other,
|
|
// it means that those elements are definitely not in the
|
|
// intersection.
|
|
while (First != FirstEnd && Second != SecondEnd) {
|
|
// We want to keep the following invariant at all times:
|
|
//
|
|
// ----[ First ---------------------->
|
|
// --------[ Second ----------------->
|
|
if (Second->From() < First->From())
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
|
|
// Loop where the invariant holds:
|
|
do {
|
|
// Check for the following situation:
|
|
//
|
|
// ----[ First ]--------------------->
|
|
// ---------------[ Second ]--------->
|
|
//
|
|
// which means that...
|
|
if (Second->From() > First->To()) {
|
|
// ...First is not in the intersection.
|
|
//
|
|
// We should move on to the next range after First and break out of the
|
|
// loop because the invariant might not be true.
|
|
++First;
|
|
break;
|
|
}
|
|
|
|
// We have a guaranteed intersection at this point!
|
|
// And this is the current situation:
|
|
//
|
|
// ----[ First ]----------------->
|
|
// -------[ Second ------------------>
|
|
//
|
|
// Additionally, it definitely starts with Second->From().
|
|
const llvm::APSInt &IntersectionStart = Second->From();
|
|
|
|
// It is important to know which of the two ranges' ends
|
|
// is greater. That "longer" range might have some other
|
|
// intersections, while the "shorter" range might not.
|
|
if (Second->To() > First->To()) {
|
|
// Here we make a decision to keep First as the "longer"
|
|
// range.
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
}
|
|
|
|
// At this point, we have the following situation:
|
|
//
|
|
// ---- First ]-------------------->
|
|
// ---- Second ]--[ Second+1 ---------->
|
|
//
|
|
// We don't know the relationship between First->From and
|
|
// Second->From and we don't know whether Second+1 intersects
|
|
// with First.
|
|
//
|
|
// However, we know that [IntersectionStart, Second->To] is
|
|
// a part of the intersection...
|
|
Result.push_back(Range(IntersectionStart, Second->To()));
|
|
++Second;
|
|
// ...and that the invariant will hold for a valid Second+1
|
|
// because First->From <= Second->To < (Second+1)->From.
|
|
} while (Second != SecondEnd);
|
|
}
|
|
|
|
if (Result.empty())
|
|
return getEmptySet();
|
|
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) {
|
|
// Shortcut: let's see if the intersection is even possible.
|
|
if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() ||
|
|
RHS.getMaxValue() < LHS.getMinValue())
|
|
return getEmptySet();
|
|
|
|
return intersect(*LHS.Impl, *RHS.Impl);
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) {
|
|
if (LHS.containsImpl(Point))
|
|
return getRangeSet(ValueFactory.getValue(Point));
|
|
|
|
return getEmptySet();
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::negate(RangeSet What) {
|
|
if (What.isEmpty())
|
|
return getEmptySet();
|
|
|
|
const llvm::APSInt SampleValue = What.getMinValue();
|
|
const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue);
|
|
const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue);
|
|
|
|
ContainerType Result;
|
|
Result.reserve(What.size() + (SampleValue == MIN));
|
|
|
|
// Handle a special case for MIN value.
|
|
const_iterator It = What.begin();
|
|
const_iterator End = What.end();
|
|
|
|
const llvm::APSInt &From = It->From();
|
|
const llvm::APSInt &To = It->To();
|
|
|
|
if (From == MIN) {
|
|
// If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX].
|
|
if (To == MAX) {
|
|
return What;
|
|
}
|
|
|
|
const_iterator Last = std::prev(End);
|
|
|
|
// Try to find and unite the following ranges:
|
|
// [MIN, MIN] & [MIN + 1, N] => [MIN, N].
|
|
if (Last->To() == MAX) {
|
|
// It means that in the original range we have ranges
|
|
// [MIN, A], ... , [B, MAX]
|
|
// And the result should be [MIN, -B], ..., [-A, MAX]
|
|
Result.emplace_back(MIN, ValueFactory.getValue(-Last->From()));
|
|
// We already negated Last, so we can skip it.
|
|
End = Last;
|
|
} else {
|
|
// Add a separate range for the lowest value.
|
|
Result.emplace_back(MIN, MIN);
|
|
}
|
|
|
|
// Skip adding the second range in case when [From, To] are [MIN, MIN].
|
|
if (To != MIN) {
|
|
Result.emplace_back(ValueFactory.getValue(-To), MAX);
|
|
}
|
|
|
|
// Skip the first range in the loop.
|
|
++It;
|
|
}
|
|
|
|
// Negate all other ranges.
|
|
for (; It != End; ++It) {
|
|
// Negate int values.
|
|
const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To());
|
|
const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From());
|
|
|
|
// Add a negated range.
|
|
Result.emplace_back(NewFrom, NewTo);
|
|
}
|
|
|
|
llvm::sort(Result);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
// Convert range set to the given integral type using truncation and promotion.
|
|
// This works similar to APSIntType::apply function but for the range set.
|
|
RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) {
|
|
// Set is empty or NOOP (aka cast to the same type).
|
|
if (What.isEmpty() || What.getAPSIntType() == Ty)
|
|
return What;
|
|
|
|
const bool IsConversion = What.isUnsigned() != Ty.isUnsigned();
|
|
const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth();
|
|
const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth();
|
|
|
|
if (IsTruncation)
|
|
return makePersistent(truncateTo(What, Ty));
|
|
|
|
// Here we handle 2 cases:
|
|
// - IsConversion && !IsPromotion.
|
|
// In this case we handle changing a sign with same bitwidth: char -> uchar,
|
|
// uint -> int. Here we convert negatives to positives and positives which
|
|
// is out of range to negatives. We use convertTo function for that.
|
|
// - IsConversion && IsPromotion && !What.isUnsigned().
|
|
// In this case we handle changing a sign from signeds to unsigneds with
|
|
// higher bitwidth: char -> uint, int-> uint64. The point is that we also
|
|
// need convert negatives to positives and use convertTo function as well.
|
|
// For example, we don't need such a convertion when converting unsigned to
|
|
// signed with higher bitwidth, because all the values of unsigned is valid
|
|
// for the such signed.
|
|
if (IsConversion && (!IsPromotion || !What.isUnsigned()))
|
|
return makePersistent(convertTo(What, Ty));
|
|
|
|
assert(IsPromotion && "Only promotion operation from unsigneds left.");
|
|
return makePersistent(promoteTo(What, Ty));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) {
|
|
assert(T->isIntegralOrEnumerationType() && "T shall be an integral type.");
|
|
return castTo(What, ValueFactory.getAPSIntType(T));
|
|
}
|
|
|
|
RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What,
|
|
APSIntType Ty) {
|
|
using llvm::APInt;
|
|
using llvm::APSInt;
|
|
ContainerType Result;
|
|
ContainerType Dummy;
|
|
// CastRangeSize is an amount of all possible values of cast type.
|
|
// Example: `char` has 256 values; `short` has 65536 values.
|
|
// But in fact we use `amount of values` - 1, because
|
|
// we can't keep `amount of values of UINT64` inside uint64_t.
|
|
// E.g. 256 is an amount of all possible values of `char` and we can't keep
|
|
// it inside `char`.
|
|
// And it's OK, it's enough to do correct calculations.
|
|
uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue();
|
|
for (const Range &R : What) {
|
|
// Get bounds of the given range.
|
|
APSInt FromInt = R.From();
|
|
APSInt ToInt = R.To();
|
|
// CurrentRangeSize is an amount of all possible values of the current
|
|
// range minus one.
|
|
uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue();
|
|
// This is an optimization for a specific case when this Range covers
|
|
// the whole range of the target type.
|
|
Dummy.clear();
|
|
if (CurrentRangeSize >= CastRangeSize) {
|
|
Dummy.emplace_back(ValueFactory.getMinValue(Ty),
|
|
ValueFactory.getMaxValue(Ty));
|
|
Result = std::move(Dummy);
|
|
break;
|
|
}
|
|
// Cast the bounds.
|
|
Ty.apply(FromInt);
|
|
Ty.apply(ToInt);
|
|
const APSInt &PersistentFrom = ValueFactory.getValue(FromInt);
|
|
const APSInt &PersistentTo = ValueFactory.getValue(ToInt);
|
|
if (FromInt > ToInt) {
|
|
Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo);
|
|
Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty));
|
|
} else
|
|
Dummy.emplace_back(PersistentFrom, PersistentTo);
|
|
// Every range retrieved after truncation potentialy has garbage values.
|
|
// So, we have to unite every next range with the previouses.
|
|
Result = unite(Result, Dummy);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Divide the convertion into two phases (presented as loops here).
|
|
// First phase(loop) works when casted values go in ascending order.
|
|
// E.g. char{1,3,5,127} -> uint{1,3,5,127}
|
|
// Interrupt the first phase and go to second one when casted values start
|
|
// go in descending order. That means that we crossed over the middle of
|
|
// the type value set (aka 0 for signeds and MAX/2+1 for unsigneds).
|
|
// For instance:
|
|
// 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1}
|
|
// Here we put {1,3,5} to one array and {-128, -1} to another
|
|
// 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3}
|
|
// Here we put {128,129,255} to one array and {0,1,3} to another.
|
|
// After that we unite both arrays.
|
|
// NOTE: We don't just concatenate the arrays, because they may have
|
|
// adjacent ranges, e.g.:
|
|
// 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) ->
|
|
// unite -> uchar(0, 255)
|
|
// 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) ->
|
|
// unite -> uchar(-2, 1)
|
|
RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What,
|
|
APSIntType Ty) {
|
|
using llvm::APInt;
|
|
using llvm::APSInt;
|
|
using Bounds = std::pair<const APSInt &, const APSInt &>;
|
|
ContainerType AscendArray;
|
|
ContainerType DescendArray;
|
|
auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds {
|
|
// Get bounds of the given range.
|
|
APSInt FromInt = R.From();
|
|
APSInt ToInt = R.To();
|
|
// Cast the bounds.
|
|
Ty.apply(FromInt);
|
|
Ty.apply(ToInt);
|
|
return {VF.getValue(FromInt), VF.getValue(ToInt)};
|
|
};
|
|
// Phase 1. Fill the first array.
|
|
APSInt LastConvertedInt = Ty.getMinValue();
|
|
const auto *It = What.begin();
|
|
const auto *E = What.end();
|
|
while (It != E) {
|
|
Bounds NewBounds = CastRange(*(It++));
|
|
// If values stop going acsending order, go to the second phase(loop).
|
|
if (NewBounds.first < LastConvertedInt) {
|
|
DescendArray.emplace_back(NewBounds.first, NewBounds.second);
|
|
break;
|
|
}
|
|
// If the range contains a midpoint, then split the range.
|
|
// E.g. char(-5, 5) -> uchar(251, 5)
|
|
// Here we shall add a range (251, 255) to the first array and (0, 5) to the
|
|
// second one.
|
|
if (NewBounds.first > NewBounds.second) {
|
|
DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second);
|
|
AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty));
|
|
} else
|
|
// Values are going acsending order.
|
|
AscendArray.emplace_back(NewBounds.first, NewBounds.second);
|
|
LastConvertedInt = NewBounds.first;
|
|
}
|
|
// Phase 2. Fill the second array.
|
|
while (It != E) {
|
|
Bounds NewBounds = CastRange(*(It++));
|
|
DescendArray.emplace_back(NewBounds.first, NewBounds.second);
|
|
}
|
|
// Unite both arrays.
|
|
return unite(AscendArray, DescendArray);
|
|
}
|
|
|
|
/// Promotion from unsigneds to signeds/unsigneds left.
|
|
RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What,
|
|
APSIntType Ty) {
|
|
ContainerType Result;
|
|
// We definitely know the size of the result set.
|
|
Result.reserve(What.size());
|
|
|
|
// Each unsigned value fits every larger type without any changes,
|
|
// whether the larger type is signed or unsigned. So just promote and push
|
|
// back each range one by one.
|
|
for (const Range &R : What) {
|
|
// Get bounds of the given range.
|
|
llvm::APSInt FromInt = R.From();
|
|
llvm::APSInt ToInt = R.To();
|
|
// Cast the bounds.
|
|
Ty.apply(FromInt);
|
|
Ty.apply(ToInt);
|
|
Result.emplace_back(ValueFactory.getValue(FromInt),
|
|
ValueFactory.getValue(ToInt));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::deletePoint(RangeSet From,
|
|
const llvm::APSInt &Point) {
|
|
if (!From.contains(Point))
|
|
return From;
|
|
|
|
llvm::APSInt Upper = Point;
|
|
llvm::APSInt Lower = Point;
|
|
|
|
++Upper;
|
|
--Lower;
|
|
|
|
// Notice that the lower bound is greater than the upper bound.
|
|
return intersect(From, Upper, Lower);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const {
|
|
OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']';
|
|
}
|
|
LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); }
|
|
|
|
LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const {
|
|
OS << "{ ";
|
|
llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); });
|
|
OS << " }";
|
|
}
|
|
LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); }
|
|
|
|
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef)
|
|
|
|
namespace {
|
|
class EquivalenceClass;
|
|
} // end anonymous namespace
|
|
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet)
|
|
|
|
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet)
|
|
|
|
namespace {
|
|
/// This class encapsulates a set of symbols equal to each other.
|
|
///
|
|
/// The main idea of the approach requiring such classes is in narrowing
|
|
/// and sharing constraints between symbols within the class. Also we can
|
|
/// conclude that there is no practical need in storing constraints for
|
|
/// every member of the class separately.
|
|
///
|
|
/// Main terminology:
|
|
///
|
|
/// * "Equivalence class" is an object of this class, which can be efficiently
|
|
/// compared to other classes. It represents the whole class without
|
|
/// storing the actual in it. The members of the class however can be
|
|
/// retrieved from the state.
|
|
///
|
|
/// * "Class members" are the symbols corresponding to the class. This means
|
|
/// that A == B for every member symbols A and B from the class. Members of
|
|
/// each class are stored in the state.
|
|
///
|
|
/// * "Trivial class" is a class that has and ever had only one same symbol.
|
|
///
|
|
/// * "Merge operation" merges two classes into one. It is the main operation
|
|
/// to produce non-trivial classes.
|
|
/// If, at some point, we can assume that two symbols from two distinct
|
|
/// classes are equal, we can merge these classes.
|
|
class EquivalenceClass : public llvm::FoldingSetNode {
|
|
public:
|
|
/// Find equivalence class for the given symbol in the given state.
|
|
[[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State,
|
|
SymbolRef Sym);
|
|
|
|
/// Merge classes for the given symbols and return a new state.
|
|
[[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
SymbolRef First,
|
|
SymbolRef Second);
|
|
// Merge this class with the given class and return a new state.
|
|
[[nodiscard]] inline ProgramStateRef
|
|
merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other);
|
|
|
|
/// Return a set of class members for the given state.
|
|
[[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const;
|
|
|
|
/// Return true if the current class is trivial in the given state.
|
|
/// A class is trivial if and only if there is not any member relations stored
|
|
/// to it in State/ClassMembers.
|
|
/// An equivalence class with one member might seem as it does not hold any
|
|
/// meaningful information, i.e. that is a tautology. However, during the
|
|
/// removal of dead symbols we do not remove classes with one member for
|
|
/// resource and performance reasons. Consequently, a class with one member is
|
|
/// not necessarily trivial. It could happen that we have a class with two
|
|
/// members and then during the removal of dead symbols we remove one of its
|
|
/// members. In this case, the class is still non-trivial (it still has the
|
|
/// mappings in ClassMembers), even though it has only one member.
|
|
[[nodiscard]] inline bool isTrivial(ProgramStateRef State) const;
|
|
|
|
/// Return true if the current class is trivial and its only member is dead.
|
|
[[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State,
|
|
SymbolReaper &Reaper) const;
|
|
|
|
[[nodiscard]] static inline ProgramStateRef
|
|
markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First,
|
|
SymbolRef Second);
|
|
[[nodiscard]] static inline ProgramStateRef
|
|
markDisequal(RangeSet::Factory &F, ProgramStateRef State,
|
|
EquivalenceClass First, EquivalenceClass Second);
|
|
[[nodiscard]] inline ProgramStateRef
|
|
markDisequal(RangeSet::Factory &F, ProgramStateRef State,
|
|
EquivalenceClass Other) const;
|
|
[[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State,
|
|
SymbolRef Sym);
|
|
[[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const;
|
|
[[nodiscard]] inline ClassSet
|
|
getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const;
|
|
|
|
[[nodiscard]] static inline Optional<bool> areEqual(ProgramStateRef State,
|
|
EquivalenceClass First,
|
|
EquivalenceClass Second);
|
|
[[nodiscard]] static inline Optional<bool>
|
|
areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second);
|
|
|
|
/// Remove one member from the class.
|
|
[[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State,
|
|
const SymbolRef Old);
|
|
|
|
/// Iterate over all symbols and try to simplify them.
|
|
[[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB,
|
|
RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
EquivalenceClass Class);
|
|
|
|
void dumpToStream(ProgramStateRef State, raw_ostream &os) const;
|
|
LLVM_DUMP_METHOD void dump(ProgramStateRef State) const {
|
|
dumpToStream(State, llvm::errs());
|
|
}
|
|
|
|
/// Check equivalence data for consistency.
|
|
[[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool
|
|
isClassDataConsistent(ProgramStateRef State);
|
|
|
|
[[nodiscard]] QualType getType() const {
|
|
return getRepresentativeSymbol()->getType();
|
|
}
|
|
|
|
EquivalenceClass() = delete;
|
|
EquivalenceClass(const EquivalenceClass &) = default;
|
|
EquivalenceClass &operator=(const EquivalenceClass &) = delete;
|
|
EquivalenceClass(EquivalenceClass &&) = default;
|
|
EquivalenceClass &operator=(EquivalenceClass &&) = delete;
|
|
|
|
bool operator==(const EquivalenceClass &Other) const {
|
|
return ID == Other.ID;
|
|
}
|
|
bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; }
|
|
bool operator!=(const EquivalenceClass &Other) const {
|
|
return !operator==(Other);
|
|
}
|
|
|
|
static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) {
|
|
ID.AddInteger(CID);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); }
|
|
|
|
private:
|
|
/* implicit */ EquivalenceClass(SymbolRef Sym)
|
|
: ID(reinterpret_cast<uintptr_t>(Sym)) {}
|
|
|
|
/// This function is intended to be used ONLY within the class.
|
|
/// The fact that ID is a pointer to a symbol is an implementation detail
|
|
/// and should stay that way.
|
|
/// In the current implementation, we use it to retrieve the only member
|
|
/// of the trivial class.
|
|
SymbolRef getRepresentativeSymbol() const {
|
|
return reinterpret_cast<SymbolRef>(ID);
|
|
}
|
|
static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State);
|
|
|
|
inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State,
|
|
SymbolSet Members, EquivalenceClass Other,
|
|
SymbolSet OtherMembers);
|
|
|
|
static inline bool
|
|
addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
|
|
RangeSet::Factory &F, ProgramStateRef State,
|
|
EquivalenceClass First, EquivalenceClass Second);
|
|
|
|
/// This is a unique identifier of the class.
|
|
uintptr_t ID;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
[[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool
|
|
areFeasible(ConstraintRangeTy Constraints) {
|
|
return llvm::none_of(
|
|
Constraints,
|
|
[](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) {
|
|
return ClassConstraint.second.isEmpty();
|
|
});
|
|
}
|
|
|
|
[[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State,
|
|
EquivalenceClass Class) {
|
|
return State->get<ConstraintRange>(Class);
|
|
}
|
|
|
|
[[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return getConstraint(State, EquivalenceClass::find(State, Sym));
|
|
}
|
|
|
|
[[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State,
|
|
EquivalenceClass Class,
|
|
RangeSet Constraint) {
|
|
return State->set<ConstraintRange>(Class, Constraint);
|
|
}
|
|
|
|
[[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State,
|
|
ConstraintRangeTy Constraints) {
|
|
return State->set<ConstraintRange>(Constraints);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Equality/diseqiality abstraction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A small helper function for detecting symbolic (dis)equality.
|
|
///
|
|
/// Equality check can have different forms (like a == b or a - b) and this
|
|
/// class encapsulates those away if the only thing the user wants to check -
|
|
/// whether it's equality/diseqiality or not.
|
|
///
|
|
/// \returns true if assuming this Sym to be true means equality of operands
|
|
/// false if it means disequality of operands
|
|
/// None otherwise
|
|
Optional<bool> meansEquality(const SymSymExpr *Sym) {
|
|
switch (Sym->getOpcode()) {
|
|
case BO_Sub:
|
|
// This case is: A - B != 0 -> disequality check.
|
|
return false;
|
|
case BO_EQ:
|
|
// This case is: A == B != 0 -> equality check.
|
|
return true;
|
|
case BO_NE:
|
|
// This case is: A != B != 0 -> diseqiality check.
|
|
return false;
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Intersection functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class SecondTy, class... RestTy>
|
|
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
|
|
SecondTy Second, RestTy... Tail);
|
|
|
|
template <class... RangeTy> struct IntersectionTraits;
|
|
|
|
template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> {
|
|
// Found RangeSet, no need to check any further
|
|
using Type = RangeSet;
|
|
};
|
|
|
|
template <> struct IntersectionTraits<> {
|
|
// We ran out of types, and we didn't find any RangeSet, so the result should
|
|
// be optional.
|
|
using Type = Optional<RangeSet>;
|
|
};
|
|
|
|
template <class OptionalOrPointer, class... TailTy>
|
|
struct IntersectionTraits<OptionalOrPointer, TailTy...> {
|
|
// If current type is Optional or a raw pointer, we should keep looking.
|
|
using Type = typename IntersectionTraits<TailTy...>::Type;
|
|
};
|
|
|
|
template <class EndTy>
|
|
[[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) {
|
|
// If the list contains only RangeSet or Optional<RangeSet>, simply return
|
|
// that range set.
|
|
return End;
|
|
}
|
|
|
|
[[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet>
|
|
intersect(RangeSet::Factory &F, const RangeSet *End) {
|
|
// This is an extraneous conversion from a raw pointer into Optional<RangeSet>
|
|
if (End) {
|
|
return *End;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
template <class... RestTy>
|
|
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
|
|
RangeSet Second, RestTy... Tail) {
|
|
// Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version
|
|
// of the function and can be sure that the result is RangeSet.
|
|
return intersect(F, F.intersect(Head, Second), Tail...);
|
|
}
|
|
|
|
template <class SecondTy, class... RestTy>
|
|
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
|
|
SecondTy Second, RestTy... Tail) {
|
|
if (Second) {
|
|
// Here we call the <RangeSet,RangeSet,...> version of the function...
|
|
return intersect(F, Head, *Second, Tail...);
|
|
}
|
|
// ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which
|
|
// means that the result is definitely RangeSet.
|
|
return intersect(F, Head, Tail...);
|
|
}
|
|
|
|
/// Main generic intersect function.
|
|
/// It intersects all of the given range sets. If some of the given arguments
|
|
/// don't hold a range set (nullptr or std::nullopt), the function will skip
|
|
/// them.
|
|
///
|
|
/// Available representations for the arguments are:
|
|
/// * RangeSet
|
|
/// * Optional<RangeSet>
|
|
/// * RangeSet *
|
|
/// Pointer to a RangeSet is automatically assumed to be nullable and will get
|
|
/// checked as well as the optional version. If this behaviour is undesired,
|
|
/// please dereference the pointer in the call.
|
|
///
|
|
/// Return type depends on the arguments' types. If we can be sure in compile
|
|
/// time that there will be a range set as a result, the returning type is
|
|
/// simply RangeSet, in other cases we have to back off to Optional<RangeSet>.
|
|
///
|
|
/// Please, prefer optional range sets to raw pointers. If the last argument is
|
|
/// a raw pointer and all previous arguments are std::nullopt, it will cost one
|
|
/// additional check to convert RangeSet * into Optional<RangeSet>.
|
|
template <class HeadTy, class SecondTy, class... RestTy>
|
|
[[nodiscard]] inline
|
|
typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type
|
|
intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second,
|
|
RestTy... Tail) {
|
|
if (Head) {
|
|
return intersect(F, *Head, Second, Tail...);
|
|
}
|
|
return intersect(F, Second, Tail...);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbolic reasoning logic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A little component aggregating all of the reasoning we have about
|
|
/// the ranges of symbolic expressions.
|
|
///
|
|
/// Even when we don't know the exact values of the operands, we still
|
|
/// can get a pretty good estimate of the result's range.
|
|
class SymbolicRangeInferrer
|
|
: public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
|
|
public:
|
|
template <class SourceType>
|
|
static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State,
|
|
SourceType Origin) {
|
|
SymbolicRangeInferrer Inferrer(F, State);
|
|
return Inferrer.infer(Origin);
|
|
}
|
|
|
|
RangeSet VisitSymExpr(SymbolRef Sym) {
|
|
if (Optional<RangeSet> RS = getRangeForNegatedSym(Sym))
|
|
return *RS;
|
|
// If we've reached this line, the actual type of the symbolic
|
|
// expression is not supported for advanced inference.
|
|
// In this case, we simply backoff to the default "let's simply
|
|
// infer the range from the expression's type".
|
|
return infer(Sym->getType());
|
|
}
|
|
|
|
RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) {
|
|
if (Optional<RangeSet> RS = getRangeForNegatedUnarySym(USE))
|
|
return *RS;
|
|
return infer(USE->getType());
|
|
}
|
|
|
|
RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitSymSymExpr(const SymSymExpr *SSE) {
|
|
return intersect(
|
|
RangeFactory,
|
|
// If Sym is a difference of symbols A - B, then maybe we have range
|
|
// set stored for B - A.
|
|
//
|
|
// If we have range set stored for both A - B and B - A then
|
|
// calculate the effective range set by intersecting the range set
|
|
// for A - B and the negated range set of B - A.
|
|
getRangeForNegatedSymSym(SSE),
|
|
// If Sym is a comparison expression (except <=>),
|
|
// find any other comparisons with the same operands.
|
|
// See function description.
|
|
getRangeForComparisonSymbol(SSE),
|
|
// If Sym is (dis)equality, we might have some information
|
|
// on that in our equality classes data structure.
|
|
getRangeForEqualities(SSE),
|
|
// And we should always check what we can get from the operands.
|
|
VisitBinaryOperator(SSE));
|
|
}
|
|
|
|
private:
|
|
SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S)
|
|
: ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {}
|
|
|
|
/// Infer range information from the given integer constant.
|
|
///
|
|
/// It's not a real "inference", but is here for operating with
|
|
/// sub-expressions in a more polymorphic manner.
|
|
RangeSet inferAs(const llvm::APSInt &Val, QualType) {
|
|
return {RangeFactory, Val};
|
|
}
|
|
|
|
/// Infer range information from symbol in the context of the given type.
|
|
RangeSet inferAs(SymbolRef Sym, QualType DestType) {
|
|
QualType ActualType = Sym->getType();
|
|
// Check that we can reason about the symbol at all.
|
|
if (ActualType->isIntegralOrEnumerationType() ||
|
|
Loc::isLocType(ActualType)) {
|
|
return infer(Sym);
|
|
}
|
|
// Otherwise, let's simply infer from the destination type.
|
|
// We couldn't figure out nothing else about that expression.
|
|
return infer(DestType);
|
|
}
|
|
|
|
RangeSet infer(SymbolRef Sym) {
|
|
return intersect(RangeFactory,
|
|
// Of course, we should take the constraint directly
|
|
// associated with this symbol into consideration.
|
|
getConstraint(State, Sym),
|
|
// Apart from the Sym itself, we can infer quite a lot if
|
|
// we look into subexpressions of Sym.
|
|
Visit(Sym));
|
|
}
|
|
|
|
RangeSet infer(EquivalenceClass Class) {
|
|
if (const RangeSet *AssociatedConstraint = getConstraint(State, Class))
|
|
return *AssociatedConstraint;
|
|
|
|
return infer(Class.getType());
|
|
}
|
|
|
|
/// Infer range information solely from the type.
|
|
RangeSet infer(QualType T) {
|
|
// Lazily generate a new RangeSet representing all possible values for the
|
|
// given symbol type.
|
|
RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
|
|
ValueFactory.getMaxValue(T));
|
|
|
|
// References are known to be non-zero.
|
|
if (T->isReferenceType())
|
|
return assumeNonZero(Result, T);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <class BinarySymExprTy>
|
|
RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
|
|
// TODO #1: VisitBinaryOperator implementation might not make a good
|
|
// use of the inferred ranges. In this case, we might be calculating
|
|
// everything for nothing. This being said, we should introduce some
|
|
// sort of laziness mechanism here.
|
|
//
|
|
// TODO #2: We didn't go into the nested expressions before, so it
|
|
// might cause us spending much more time doing the inference.
|
|
// This can be a problem for deeply nested expressions that are
|
|
// involved in conditions and get tested continuously. We definitely
|
|
// need to address this issue and introduce some sort of caching
|
|
// in here.
|
|
QualType ResultType = Sym->getType();
|
|
return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
|
|
Sym->getOpcode(),
|
|
inferAs(Sym->getRHS(), ResultType), ResultType);
|
|
}
|
|
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
|
|
RangeSet RHS, QualType T) {
|
|
switch (Op) {
|
|
case BO_Or:
|
|
return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
|
|
case BO_And:
|
|
return VisitBinaryOperator<BO_And>(LHS, RHS, T);
|
|
case BO_Rem:
|
|
return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
|
|
default:
|
|
return infer(T);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ranges and operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return a rough approximation of the given range set.
|
|
///
|
|
/// For the range set:
|
|
/// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
|
|
/// it will return the range [x_0, y_N].
|
|
static Range fillGaps(RangeSet Origin) {
|
|
assert(!Origin.isEmpty());
|
|
return {Origin.getMinValue(), Origin.getMaxValue()};
|
|
}
|
|
|
|
/// Try to convert given range into the given type.
|
|
///
|
|
/// It will return std::nullopt only when the trivial conversion is possible.
|
|
llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
|
|
if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
|
|
To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
|
|
return std::nullopt;
|
|
}
|
|
return Range(ValueFactory.Convert(To, Origin.From()),
|
|
ValueFactory.Convert(To, Origin.To()));
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
|
|
// We should propagate information about unfeasbility of one of the
|
|
// operands to the resulting range.
|
|
if (LHS.isEmpty() || RHS.isEmpty()) {
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
Range CoarseLHS = fillGaps(LHS);
|
|
Range CoarseRHS = fillGaps(RHS);
|
|
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
|
|
// We need to convert ranges to the resulting type, so we can compare values
|
|
// and combine them in a meaningful (in terms of the given operation) way.
|
|
auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
|
|
auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
|
|
|
|
// It is hard to reason about ranges when conversion changes
|
|
// borders of the ranges.
|
|
if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
|
|
return infer(T);
|
|
}
|
|
|
|
return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
|
|
return infer(T);
|
|
}
|
|
|
|
/// Return a symmetrical range for the given range and type.
|
|
///
|
|
/// If T is signed, return the smallest range [-x..x] that covers the original
|
|
/// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
|
|
/// exist due to original range covering min(T)).
|
|
///
|
|
/// If T is unsigned, return the smallest range [0..x] that covers the
|
|
/// original range.
|
|
Range getSymmetricalRange(Range Origin, QualType T) {
|
|
APSIntType RangeType = ValueFactory.getAPSIntType(T);
|
|
|
|
if (RangeType.isUnsigned()) {
|
|
return Range(ValueFactory.getMinValue(RangeType), Origin.To());
|
|
}
|
|
|
|
if (Origin.From().isMinSignedValue()) {
|
|
// If mini is a minimal signed value, absolute value of it is greater
|
|
// than the maximal signed value. In order to avoid these
|
|
// complications, we simply return the whole range.
|
|
return {ValueFactory.getMinValue(RangeType),
|
|
ValueFactory.getMaxValue(RangeType)};
|
|
}
|
|
|
|
// At this point, we are sure that the type is signed and we can safely
|
|
// use unary - operator.
|
|
//
|
|
// While calculating absolute maximum, we can use the following formula
|
|
// because of these reasons:
|
|
// * If From >= 0 then To >= From and To >= -From.
|
|
// AbsMax == To == max(To, -From)
|
|
// * If To <= 0 then -From >= -To and -From >= From.
|
|
// AbsMax == -From == max(-From, To)
|
|
// * Otherwise, From <= 0, To >= 0, and
|
|
// AbsMax == max(abs(From), abs(To))
|
|
llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
|
|
|
|
// Intersection is guaranteed to be non-empty.
|
|
return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
|
|
}
|
|
|
|
/// Return a range set subtracting zero from \p Domain.
|
|
RangeSet assumeNonZero(RangeSet Domain, QualType T) {
|
|
APSIntType IntType = ValueFactory.getAPSIntType(T);
|
|
return RangeFactory.deletePoint(Domain, IntType.getZeroValue());
|
|
}
|
|
|
|
template <typename ProduceNegatedSymFunc>
|
|
Optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F,
|
|
QualType T) {
|
|
// Do not negate if the type cannot be meaningfully negated.
|
|
if (!T->isUnsignedIntegerOrEnumerationType() &&
|
|
!T->isSignedIntegerOrEnumerationType())
|
|
return std::nullopt;
|
|
|
|
if (SymbolRef NegatedSym = F())
|
|
if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym))
|
|
return RangeFactory.negate(*NegatedRange);
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
Optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) {
|
|
// Just get the operand when we negate a symbol that is already negated.
|
|
// -(-a) == a
|
|
return getRangeForNegatedExpr(
|
|
[USE]() -> SymbolRef {
|
|
if (USE->getOpcode() == UO_Minus)
|
|
return USE->getOperand();
|
|
return nullptr;
|
|
},
|
|
USE->getType());
|
|
}
|
|
|
|
Optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) {
|
|
return getRangeForNegatedExpr(
|
|
[SSE, State = this->State]() -> SymbolRef {
|
|
if (SSE->getOpcode() == BO_Sub)
|
|
return State->getSymbolManager().getSymSymExpr(
|
|
SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType());
|
|
return nullptr;
|
|
},
|
|
SSE->getType());
|
|
}
|
|
|
|
Optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) {
|
|
return getRangeForNegatedExpr(
|
|
[Sym, State = this->State]() {
|
|
return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus,
|
|
Sym->getType());
|
|
},
|
|
Sym->getType());
|
|
}
|
|
|
|
// Returns ranges only for binary comparison operators (except <=>)
|
|
// when left and right operands are symbolic values.
|
|
// Finds any other comparisons with the same operands.
|
|
// Then do logical calculations and refuse impossible branches.
|
|
// E.g. (x < y) and (x > y) at the same time are impossible.
|
|
// E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
|
|
// E.g. (x == y) and (y == x) are just reversed but the same.
|
|
// It covers all possible combinations (see CmpOpTable description).
|
|
// Note that `x` and `y` can also stand for subexpressions,
|
|
// not only for actual symbols.
|
|
Optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) {
|
|
const BinaryOperatorKind CurrentOP = SSE->getOpcode();
|
|
|
|
// We currently do not support <=> (C++20).
|
|
if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
|
|
return std::nullopt;
|
|
|
|
static const OperatorRelationsTable CmpOpTable{};
|
|
|
|
const SymExpr *LHS = SSE->getLHS();
|
|
const SymExpr *RHS = SSE->getRHS();
|
|
QualType T = SSE->getType();
|
|
|
|
SymbolManager &SymMgr = State->getSymbolManager();
|
|
|
|
// We use this variable to store the last queried operator (`QueriedOP`)
|
|
// for which the `getCmpOpState` returned with `Unknown`. If there are two
|
|
// different OPs that returned `Unknown` then we have to query the special
|
|
// `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)`
|
|
// never returns `Unknown`, so `CurrentOP` is a good initial value.
|
|
BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP;
|
|
|
|
// Loop goes through all of the columns exept the last one ('UnknownX2').
|
|
// We treat `UnknownX2` column separately at the end of the loop body.
|
|
for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
|
|
|
|
// Let's find an expression e.g. (x < y).
|
|
BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
|
|
const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
|
|
const RangeSet *QueriedRangeSet = getConstraint(State, SymSym);
|
|
|
|
// If ranges were not previously found,
|
|
// try to find a reversed expression (y > x).
|
|
if (!QueriedRangeSet) {
|
|
const BinaryOperatorKind ROP =
|
|
BinaryOperator::reverseComparisonOp(QueriedOP);
|
|
SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
|
|
QueriedRangeSet = getConstraint(State, SymSym);
|
|
}
|
|
|
|
if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
|
|
continue;
|
|
|
|
const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
|
|
const bool isInFalseBranch =
|
|
ConcreteValue ? (*ConcreteValue == 0) : false;
|
|
|
|
// If it is a false branch, we shall be guided by opposite operator,
|
|
// because the table is made assuming we are in the true branch.
|
|
// E.g. when (x <= y) is false, then (x > y) is true.
|
|
if (isInFalseBranch)
|
|
QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
|
|
|
|
OperatorRelationsTable::TriStateKind BranchState =
|
|
CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
|
|
|
|
if (BranchState == OperatorRelationsTable::Unknown) {
|
|
if (LastQueriedOpToUnknown != CurrentOP &&
|
|
LastQueriedOpToUnknown != QueriedOP) {
|
|
// If we got the Unknown state for both different operators.
|
|
// if (x <= y) // assume true
|
|
// if (x != y) // assume true
|
|
// if (x < y) // would be also true
|
|
// Get a state from `UnknownX2` column.
|
|
BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
|
|
} else {
|
|
LastQueriedOpToUnknown = QueriedOP;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T)
|
|
: getFalseRange(T);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) {
|
|
Optional<bool> Equality = meansEquality(Sym);
|
|
|
|
if (!Equality)
|
|
return std::nullopt;
|
|
|
|
if (Optional<bool> AreEqual =
|
|
EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) {
|
|
// Here we cover two cases at once:
|
|
// * if Sym is equality and its operands are known to be equal -> true
|
|
// * if Sym is disequality and its operands are disequal -> true
|
|
if (*AreEqual == *Equality) {
|
|
return getTrueRange(Sym->getType());
|
|
}
|
|
// Opposite combinations result in false.
|
|
return getFalseRange(Sym->getType());
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
RangeSet getTrueRange(QualType T) {
|
|
RangeSet TypeRange = infer(T);
|
|
return assumeNonZero(TypeRange, T);
|
|
}
|
|
|
|
RangeSet getFalseRange(QualType T) {
|
|
const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
|
|
return RangeSet(RangeFactory, Zero);
|
|
}
|
|
|
|
BasicValueFactory &ValueFactory;
|
|
RangeSet::Factory &RangeFactory;
|
|
ProgramStateRef State;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Range-based reasoning about symbolic operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely greater or equal than any of the operands.
|
|
const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
|
|
|
|
// We estimate maximal value for positives as the maximal value for the
|
|
// given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
|
|
//
|
|
// TODO: We basically, limit the resulting range from below, but don't do
|
|
// anything with the upper bound.
|
|
//
|
|
// For positive operands, it can be done as follows: for the upper
|
|
// bound of LHS and RHS we calculate the most significant bit set.
|
|
// Let's call it the N-th bit. Then we can estimate the maximal
|
|
// number to be 2^(N+1)-1, i.e. the number with all the bits up to
|
|
// the N-th bit set.
|
|
const llvm::APSInt &Max = IsLHSNegative
|
|
? ValueFactory.getValue(--Zero)
|
|
: ValueFactory.getMaxValue(ResultType);
|
|
|
|
return {RangeFactory, ValueFactory.getValue(Min), Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is negative.
|
|
if (IsLHSNegative || IsRHSNegative) {
|
|
// This means that the result is definitely negative as well.
|
|
return {RangeFactory, ValueFactory.getMinValue(ResultType),
|
|
ValueFactory.getValue(--Zero)};
|
|
}
|
|
|
|
RangeSet DefaultRange = infer(T);
|
|
|
|
// It is pretty hard to reason about operands with different signs
|
|
// (and especially with possibly different signs). We simply check if it
|
|
// can be zero. In order to conclude that the result could not be zero,
|
|
// at least one of the operands should be definitely not zero itself.
|
|
if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
|
|
return assumeNonZero(DefaultRange, T);
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return DefaultRange;
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely less or equal than any of the operands.
|
|
const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
|
|
|
|
// We conservatively estimate lower bound to be the smallest positive
|
|
// or negative value corresponding to the sign of the operands.
|
|
const llvm::APSInt &Min = IsLHSNegative
|
|
? ValueFactory.getMinValue(ResultType)
|
|
: ValueFactory.getValue(Zero);
|
|
|
|
return {RangeFactory, Min, Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is positive.
|
|
if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
|
|
// This makes result definitely positive.
|
|
//
|
|
// We can also reason about a maximal value by finding the maximal
|
|
// value of the positive operand.
|
|
const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
|
|
|
|
// The minimal value on the other hand is much harder to reason about.
|
|
// The only thing we know for sure is that the result is positive.
|
|
return {RangeFactory, ValueFactory.getValue(Zero),
|
|
ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return infer(T);
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
|
|
|
|
Range ConservativeRange = getSymmetricalRange(RHS, T);
|
|
|
|
llvm::APSInt Max = ConservativeRange.To();
|
|
llvm::APSInt Min = ConservativeRange.From();
|
|
|
|
if (Max == Zero) {
|
|
// It's an undefined behaviour to divide by 0 and it seems like we know
|
|
// for sure that RHS is 0. Let's say that the resulting range is
|
|
// simply infeasible for that matter.
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
// At this point, our conservative range is closed. The result, however,
|
|
// couldn't be greater than the RHS' maximal absolute value. Because of
|
|
// this reason, we turn the range into open (or half-open in case of
|
|
// unsigned integers).
|
|
//
|
|
// While we operate on integer values, an open interval (a, b) can be easily
|
|
// represented by the closed interval [a + 1, b - 1]. And this is exactly
|
|
// what we do next.
|
|
//
|
|
// If we are dealing with unsigned case, we shouldn't move the lower bound.
|
|
if (Min.isSigned()) {
|
|
++Min;
|
|
}
|
|
--Max;
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
// Remainder operator results with negative operands is implementation
|
|
// defined. Positive cases are much easier to reason about though.
|
|
if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
|
|
// If maximal value of LHS is less than maximal value of RHS,
|
|
// the result won't get greater than LHS.To().
|
|
Max = std::min(LHS.To(), Max);
|
|
// We want to check if it is a situation similar to the following:
|
|
//
|
|
// <------------|---[ LHS ]--------[ RHS ]----->
|
|
// -INF 0 +INF
|
|
//
|
|
// In this situation, we can conclude that (LHS / RHS) == 0 and
|
|
// (LHS % RHS) == LHS.
|
|
Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
|
|
}
|
|
|
|
// Nevertheless, the symmetrical range for RHS is a conservative estimate
|
|
// for any sign of either LHS, or RHS.
|
|
return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint manager implementation details
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class RangeConstraintManager : public RangedConstraintManager {
|
|
public:
|
|
RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
|
|
: RangedConstraintManager(EE, SVB), F(getBasicVals()) {}
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from ConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
bool haveEqualConstraints(ProgramStateRef S1,
|
|
ProgramStateRef S2) const override {
|
|
// NOTE: ClassMembers are as simple as back pointers for ClassMap,
|
|
// so comparing constraint ranges and class maps should be
|
|
// sufficient.
|
|
return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() &&
|
|
S1->get<ClassMap>() == S2->get<ClassMap>();
|
|
}
|
|
|
|
bool canReasonAbout(SVal X) const override;
|
|
|
|
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
|
|
|
|
const llvm::APSInt *getSymVal(ProgramStateRef State,
|
|
SymbolRef Sym) const override;
|
|
|
|
ProgramStateRef removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) override;
|
|
|
|
void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
|
|
unsigned int Space = 0, bool IsDot = false) const override;
|
|
void printValue(raw_ostream &Out, ProgramStateRef State,
|
|
SymbolRef Sym) override;
|
|
void printConstraints(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
void printDisequalities(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from RangedConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
private:
|
|
RangeSet::Factory F;
|
|
|
|
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
|
|
RangeSet getRange(ProgramStateRef State, EquivalenceClass Class);
|
|
ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym,
|
|
RangeSet Range);
|
|
ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class,
|
|
RangeSet Range);
|
|
|
|
RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint assignment logic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ConstraintAssignorBase is a small utility class that unifies visitor
|
|
/// for ranges with a visitor for constraints (rangeset/range/constant).
|
|
///
|
|
/// It is designed to have one derived class, but generally it can have more.
|
|
/// Derived class can control which types we handle by defining methods of the
|
|
/// following form:
|
|
///
|
|
/// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym,
|
|
/// CONSTRAINT Constraint);
|
|
///
|
|
/// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.)
|
|
/// CONSTRAINT is the type of constraint (RangeSet/Range/Const)
|
|
/// return value signifies whether we should try other handle methods
|
|
/// (i.e. false would mean to stop right after calling this method)
|
|
template <class Derived> class ConstraintAssignorBase {
|
|
public:
|
|
using Const = const llvm::APSInt &;
|
|
|
|
#define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint)
|
|
|
|
#define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \
|
|
if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \
|
|
return false
|
|
|
|
void assign(SymbolRef Sym, RangeSet Constraint) {
|
|
assignImpl(Sym, Constraint);
|
|
}
|
|
|
|
bool assignImpl(SymbolRef Sym, RangeSet Constraint) {
|
|
switch (Sym->getKind()) {
|
|
#define SYMBOL(Id, Parent) \
|
|
case SymExpr::Id##Kind: \
|
|
DISPATCH(Id);
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
|
|
}
|
|
llvm_unreachable("Unknown SymExpr kind!");
|
|
}
|
|
|
|
#define DEFAULT_ASSIGN(Id) \
|
|
bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \
|
|
return true; \
|
|
} \
|
|
bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \
|
|
bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; }
|
|
|
|
// When we dispatch for constraint types, we first try to check
|
|
// if the new constraint is the constant and try the corresponding
|
|
// assignor methods. If it didn't interrupt, we can proceed to the
|
|
// range, and finally to the range set.
|
|
#define CONSTRAINT_DISPATCH(Id) \
|
|
if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \
|
|
ASSIGN(Id, Const, Sym, *Const); \
|
|
} \
|
|
if (Constraint.size() == 1) { \
|
|
ASSIGN(Id, Range, Sym, *Constraint.begin()); \
|
|
} \
|
|
ASSIGN(Id, RangeSet, Sym, Constraint)
|
|
|
|
// Our internal assign method first tries to call assignor methods for all
|
|
// constraint types that apply. And if not interrupted, continues with its
|
|
// parent class.
|
|
#define SYMBOL(Id, Parent) \
|
|
bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \
|
|
CONSTRAINT_DISPATCH(Id); \
|
|
DISPATCH(Parent); \
|
|
} \
|
|
DEFAULT_ASSIGN(Id)
|
|
#define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent)
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
|
|
|
|
// Default implementations for the top class that doesn't have parents.
|
|
bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) {
|
|
CONSTRAINT_DISPATCH(SymExpr);
|
|
return true;
|
|
}
|
|
DEFAULT_ASSIGN(SymExpr);
|
|
|
|
#undef DISPATCH
|
|
#undef CONSTRAINT_DISPATCH
|
|
#undef DEFAULT_ASSIGN
|
|
#undef ASSIGN
|
|
};
|
|
|
|
/// A little component aggregating all of the reasoning we have about
|
|
/// assigning new constraints to symbols.
|
|
///
|
|
/// The main purpose of this class is to associate constraints to symbols,
|
|
/// and impose additional constraints on other symbols, when we can imply
|
|
/// them.
|
|
///
|
|
/// It has a nice symmetry with SymbolicRangeInferrer. When the latter
|
|
/// can provide more precise ranges by looking into the operands of the
|
|
/// expression in question, ConstraintAssignor looks into the operands
|
|
/// to see if we can imply more from the new constraint.
|
|
class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> {
|
|
public:
|
|
template <class ClassOrSymbol>
|
|
[[nodiscard]] static ProgramStateRef
|
|
assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F,
|
|
ClassOrSymbol CoS, RangeSet NewConstraint) {
|
|
if (!State || NewConstraint.isEmpty())
|
|
return nullptr;
|
|
|
|
ConstraintAssignor Assignor{State, Builder, F};
|
|
return Assignor.assign(CoS, NewConstraint);
|
|
}
|
|
|
|
/// Handle expressions like: a % b != 0.
|
|
template <typename SymT>
|
|
bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) {
|
|
if (Sym->getOpcode() != BO_Rem)
|
|
return true;
|
|
// a % b != 0 implies that a != 0.
|
|
if (!Constraint.containsZero()) {
|
|
SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS());
|
|
if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) {
|
|
State = State->assume(*NonLocSymSVal, true);
|
|
if (!State)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint);
|
|
inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym,
|
|
RangeSet Constraint) {
|
|
return handleRemainderOp(Sym, Constraint);
|
|
}
|
|
inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym,
|
|
RangeSet Constraint);
|
|
|
|
private:
|
|
ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder,
|
|
RangeSet::Factory &F)
|
|
: State(State), Builder(Builder), RangeFactory(F) {}
|
|
using Base = ConstraintAssignorBase<ConstraintAssignor>;
|
|
|
|
/// Base method for handling new constraints for symbols.
|
|
[[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) {
|
|
// All constraints are actually associated with equivalence classes, and
|
|
// that's what we are going to do first.
|
|
State = assign(EquivalenceClass::find(State, Sym), NewConstraint);
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
// And after that we can check what other things we can get from this
|
|
// constraint.
|
|
Base::assign(Sym, NewConstraint);
|
|
return State;
|
|
}
|
|
|
|
/// Base method for handling new constraints for classes.
|
|
[[nodiscard]] ProgramStateRef assign(EquivalenceClass Class,
|
|
RangeSet NewConstraint) {
|
|
// There is a chance that we might need to update constraints for the
|
|
// classes that are known to be disequal to Class.
|
|
//
|
|
// In order for this to be even possible, the new constraint should
|
|
// be simply a constant because we can't reason about range disequalities.
|
|
if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) {
|
|
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>();
|
|
|
|
// Add new constraint.
|
|
Constraints = CF.add(Constraints, Class, NewConstraint);
|
|
|
|
for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) {
|
|
RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange(
|
|
RangeFactory, State, DisequalClass);
|
|
|
|
UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point);
|
|
|
|
// If we end up with at least one of the disequal classes to be
|
|
// constrained with an empty range-set, the state is infeasible.
|
|
if (UpdatedConstraint.isEmpty())
|
|
return nullptr;
|
|
|
|
Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint);
|
|
}
|
|
assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
|
|
"a state with infeasible constraints");
|
|
|
|
return setConstraints(State, Constraints);
|
|
}
|
|
|
|
return setConstraint(State, Class, NewConstraint);
|
|
}
|
|
|
|
ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS,
|
|
SymbolRef RHS) {
|
|
return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS);
|
|
}
|
|
|
|
ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS,
|
|
SymbolRef RHS) {
|
|
return EquivalenceClass::merge(RangeFactory, State, LHS, RHS);
|
|
}
|
|
|
|
[[nodiscard]] Optional<bool> interpreteAsBool(RangeSet Constraint) {
|
|
assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here");
|
|
|
|
if (Constraint.getConcreteValue())
|
|
return !Constraint.getConcreteValue()->isZero();
|
|
|
|
if (!Constraint.containsZero())
|
|
return true;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
ProgramStateRef State;
|
|
SValBuilder &Builder;
|
|
RangeSet::Factory &RangeFactory;
|
|
};
|
|
|
|
|
|
bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym,
|
|
const llvm::APSInt &Constraint) {
|
|
llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses;
|
|
// Iterate over all equivalence classes and try to simplify them.
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) {
|
|
EquivalenceClass Class = ClassToSymbolSet.first;
|
|
State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
|
|
if (!State)
|
|
return false;
|
|
SimplifiedClasses.insert(Class);
|
|
}
|
|
|
|
// Trivial equivalence classes (those that have only one symbol member) are
|
|
// not stored in the State. Thus, we must skim through the constraints as
|
|
// well. And we try to simplify symbols in the constraints.
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
|
|
EquivalenceClass Class = ClassConstraint.first;
|
|
if (SimplifiedClasses.count(Class)) // Already simplified.
|
|
continue;
|
|
State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
|
|
if (!State)
|
|
return false;
|
|
}
|
|
|
|
// We may have trivial equivalence classes in the disequality info as
|
|
// well, and we need to simplify them.
|
|
DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
|
|
for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry :
|
|
DisequalityInfo) {
|
|
EquivalenceClass Class = DisequalityEntry.first;
|
|
ClassSet DisequalClasses = DisequalityEntry.second;
|
|
State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
|
|
if (!State)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym,
|
|
RangeSet Constraint) {
|
|
if (!handleRemainderOp(Sym, Constraint))
|
|
return false;
|
|
|
|
Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint);
|
|
|
|
if (!ConstraintAsBool)
|
|
return true;
|
|
|
|
if (Optional<bool> Equality = meansEquality(Sym)) {
|
|
// Here we cover two cases:
|
|
// * if Sym is equality and the new constraint is true -> Sym's operands
|
|
// should be marked as equal
|
|
// * if Sym is disequality and the new constraint is false -> Sym's
|
|
// operands should be also marked as equal
|
|
if (*Equality == *ConstraintAsBool) {
|
|
State = trackEquality(State, Sym->getLHS(), Sym->getRHS());
|
|
} else {
|
|
// Other combinations leave as with disequal operands.
|
|
State = trackDisequality(State, Sym->getLHS(), Sym->getRHS());
|
|
}
|
|
|
|
if (!State)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<ConstraintManager>
|
|
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
|
|
ExprEngine *Eng) {
|
|
return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
|
|
}
|
|
|
|
ConstraintMap ento::getConstraintMap(ProgramStateRef State) {
|
|
ConstraintMap::Factory &F = State->get_context<ConstraintMap>();
|
|
ConstraintMap Result = F.getEmptyMap();
|
|
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
|
|
EquivalenceClass Class = ClassConstraint.first;
|
|
SymbolSet ClassMembers = Class.getClassMembers(State);
|
|
assert(!ClassMembers.isEmpty() &&
|
|
"Class must always have at least one member!");
|
|
|
|
SymbolRef Representative = *ClassMembers.begin();
|
|
Result = F.add(Result, Representative, ClassConstraint.second);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EqualityClass implementation details
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State,
|
|
raw_ostream &os) const {
|
|
SymbolSet ClassMembers = getClassMembers(State);
|
|
for (const SymbolRef &MemberSym : ClassMembers) {
|
|
MemberSym->dump();
|
|
os << "\n";
|
|
}
|
|
}
|
|
|
|
inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
assert(State && "State should not be null");
|
|
assert(Sym && "Symbol should not be null");
|
|
// We store far from all Symbol -> Class mappings
|
|
if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym))
|
|
return *NontrivialClass;
|
|
|
|
// This is a trivial class of Sym.
|
|
return Sym;
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
SymbolRef First,
|
|
SymbolRef Second) {
|
|
EquivalenceClass FirstClass = find(State, First);
|
|
EquivalenceClass SecondClass = find(State, Second);
|
|
|
|
return FirstClass.merge(F, State, SecondClass);
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
EquivalenceClass Other) {
|
|
// It is already the same class.
|
|
if (*this == Other)
|
|
return State;
|
|
|
|
// FIXME: As of now, we support only equivalence classes of the same type.
|
|
// This limitation is connected to the lack of explicit casts in
|
|
// our symbolic expression model.
|
|
//
|
|
// That means that for `int x` and `char y` we don't distinguish
|
|
// between these two very different cases:
|
|
// * `x == y`
|
|
// * `(char)x == y`
|
|
//
|
|
// The moment we introduce symbolic casts, this restriction can be
|
|
// lifted.
|
|
if (getType() != Other.getType())
|
|
return State;
|
|
|
|
SymbolSet Members = getClassMembers(State);
|
|
SymbolSet OtherMembers = Other.getClassMembers(State);
|
|
|
|
// We estimate the size of the class by the height of tree containing
|
|
// its members. Merging is not a trivial operation, so it's easier to
|
|
// merge the smaller class into the bigger one.
|
|
if (Members.getHeight() >= OtherMembers.getHeight()) {
|
|
return mergeImpl(F, State, Members, Other, OtherMembers);
|
|
} else {
|
|
return Other.mergeImpl(F, State, OtherMembers, *this, Members);
|
|
}
|
|
}
|
|
|
|
inline ProgramStateRef
|
|
EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory,
|
|
ProgramStateRef State, SymbolSet MyMembers,
|
|
EquivalenceClass Other, SymbolSet OtherMembers) {
|
|
// Essentially what we try to recreate here is some kind of union-find
|
|
// data structure. It does have certain limitations due to persistence
|
|
// and the need to remove elements from classes.
|
|
//
|
|
// In this setting, EquialityClass object is the representative of the class
|
|
// or the parent element. ClassMap is a mapping of class members to their
|
|
// parent. Unlike the union-find structure, they all point directly to the
|
|
// class representative because we don't have an opportunity to actually do
|
|
// path compression when dealing with immutability. This means that we
|
|
// compress paths every time we do merges. It also means that we lose
|
|
// the main amortized complexity benefit from the original data structure.
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
|
|
|
|
// 1. If the merged classes have any constraints associated with them, we
|
|
// need to transfer them to the class we have left.
|
|
//
|
|
// Intersection here makes perfect sense because both of these constraints
|
|
// must hold for the whole new class.
|
|
if (Optional<RangeSet> NewClassConstraint =
|
|
intersect(RangeFactory, getConstraint(State, *this),
|
|
getConstraint(State, Other))) {
|
|
// NOTE: Essentially, NewClassConstraint should NEVER be infeasible because
|
|
// range inferrer shouldn't generate ranges incompatible with
|
|
// equivalence classes. However, at the moment, due to imperfections
|
|
// in the solver, it is possible and the merge function can also
|
|
// return infeasible states aka null states.
|
|
if (NewClassConstraint->isEmpty())
|
|
// Infeasible state
|
|
return nullptr;
|
|
|
|
// No need in tracking constraints of a now-dissolved class.
|
|
Constraints = CRF.remove(Constraints, Other);
|
|
// Assign new constraints for this class.
|
|
Constraints = CRF.add(Constraints, *this, *NewClassConstraint);
|
|
|
|
assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
|
|
"a state with infeasible constraints");
|
|
|
|
State = State->set<ConstraintRange>(Constraints);
|
|
}
|
|
|
|
// 2. Get ALL equivalence-related maps
|
|
ClassMapTy Classes = State->get<ClassMap>();
|
|
ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
|
|
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
ClassMembersTy::Factory &MF = State->get_context<ClassMembers>();
|
|
|
|
DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
|
|
DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>();
|
|
|
|
ClassSet::Factory &CF = State->get_context<ClassSet>();
|
|
SymbolSet::Factory &F = getMembersFactory(State);
|
|
|
|
// 2. Merge members of the Other class into the current class.
|
|
SymbolSet NewClassMembers = MyMembers;
|
|
for (SymbolRef Sym : OtherMembers) {
|
|
NewClassMembers = F.add(NewClassMembers, Sym);
|
|
// *this is now the class for all these new symbols.
|
|
Classes = CMF.add(Classes, Sym, *this);
|
|
}
|
|
|
|
// 3. Adjust member mapping.
|
|
//
|
|
// No need in tracking members of a now-dissolved class.
|
|
Members = MF.remove(Members, Other);
|
|
// Now only the current class is mapped to all the symbols.
|
|
Members = MF.add(Members, *this, NewClassMembers);
|
|
|
|
// 4. Update disequality relations
|
|
ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF);
|
|
// We are about to merge two classes but they are already known to be
|
|
// non-equal. This is a contradiction.
|
|
if (DisequalToOther.contains(*this))
|
|
return nullptr;
|
|
|
|
if (!DisequalToOther.isEmpty()) {
|
|
ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF);
|
|
DisequalityInfo = DF.remove(DisequalityInfo, Other);
|
|
|
|
for (EquivalenceClass DisequalClass : DisequalToOther) {
|
|
DisequalToThis = CF.add(DisequalToThis, DisequalClass);
|
|
|
|
// Disequality is a symmetric relation meaning that if
|
|
// DisequalToOther not null then the set for DisequalClass is not
|
|
// empty and has at least Other.
|
|
ClassSet OriginalSetLinkedToOther =
|
|
*DisequalityInfo.lookup(DisequalClass);
|
|
|
|
// Other will be eliminated and we should replace it with the bigger
|
|
// united class.
|
|
ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other);
|
|
NewSet = CF.add(NewSet, *this);
|
|
|
|
DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet);
|
|
}
|
|
|
|
DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis);
|
|
State = State->set<DisequalityMap>(DisequalityInfo);
|
|
}
|
|
|
|
// 5. Update the state
|
|
State = State->set<ClassMap>(Classes);
|
|
State = State->set<ClassMembers>(Members);
|
|
|
|
return State;
|
|
}
|
|
|
|
inline SymbolSet::Factory &
|
|
EquivalenceClass::getMembersFactory(ProgramStateRef State) {
|
|
return State->get_context<SymbolSet>();
|
|
}
|
|
|
|
SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const {
|
|
if (const SymbolSet *Members = State->get<ClassMembers>(*this))
|
|
return *Members;
|
|
|
|
// This class is trivial, so we need to construct a set
|
|
// with just that one symbol from the class.
|
|
SymbolSet::Factory &F = getMembersFactory(State);
|
|
return F.add(F.getEmptySet(), getRepresentativeSymbol());
|
|
}
|
|
|
|
bool EquivalenceClass::isTrivial(ProgramStateRef State) const {
|
|
return State->get<ClassMembers>(*this) == nullptr;
|
|
}
|
|
|
|
bool EquivalenceClass::isTriviallyDead(ProgramStateRef State,
|
|
SymbolReaper &Reaper) const {
|
|
return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol());
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
|
|
ProgramStateRef State,
|
|
SymbolRef First,
|
|
SymbolRef Second) {
|
|
return markDisequal(RF, State, find(State, First), find(State, Second));
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
|
|
ProgramStateRef State,
|
|
EquivalenceClass First,
|
|
EquivalenceClass Second) {
|
|
return First.markDisequal(RF, State, Second);
|
|
}
|
|
|
|
inline ProgramStateRef
|
|
EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State,
|
|
EquivalenceClass Other) const {
|
|
// If we know that two classes are equal, we can only produce an infeasible
|
|
// state.
|
|
if (*this == Other) {
|
|
return nullptr;
|
|
}
|
|
|
|
DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
|
|
// Disequality is a symmetric relation, so if we mark A as disequal to B,
|
|
// we should also mark B as disequalt to A.
|
|
if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this,
|
|
Other) ||
|
|
!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other,
|
|
*this))
|
|
return nullptr;
|
|
|
|
assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
|
|
"a state with infeasible constraints");
|
|
|
|
State = State->set<DisequalityMap>(DisequalityInfo);
|
|
State = State->set<ConstraintRange>(Constraints);
|
|
|
|
return State;
|
|
}
|
|
|
|
inline bool EquivalenceClass::addToDisequalityInfo(
|
|
DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
|
|
RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First,
|
|
EquivalenceClass Second) {
|
|
|
|
// 1. Get all of the required factories.
|
|
DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>();
|
|
ClassSet::Factory &CF = State->get_context<ClassSet>();
|
|
ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
|
|
|
|
// 2. Add Second to the set of classes disequal to First.
|
|
const ClassSet *CurrentSet = Info.lookup(First);
|
|
ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet();
|
|
NewSet = CF.add(NewSet, Second);
|
|
|
|
Info = F.add(Info, First, NewSet);
|
|
|
|
// 3. If Second is known to be a constant, we can delete this point
|
|
// from the constraint asociated with First.
|
|
//
|
|
// So, if Second == 10, it means that First != 10.
|
|
// At the same time, the same logic does not apply to ranges.
|
|
if (const RangeSet *SecondConstraint = Constraints.lookup(Second))
|
|
if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) {
|
|
|
|
RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange(
|
|
RF, State, First.getRepresentativeSymbol());
|
|
|
|
FirstConstraint = RF.deletePoint(FirstConstraint, *Point);
|
|
|
|
// If the First class is about to be constrained with an empty
|
|
// range-set, the state is infeasible.
|
|
if (FirstConstraint.isEmpty())
|
|
return false;
|
|
|
|
Constraints = CRF.add(Constraints, First, FirstConstraint);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
|
|
SymbolRef FirstSym,
|
|
SymbolRef SecondSym) {
|
|
return EquivalenceClass::areEqual(State, find(State, FirstSym),
|
|
find(State, SecondSym));
|
|
}
|
|
|
|
inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
|
|
EquivalenceClass First,
|
|
EquivalenceClass Second) {
|
|
// The same equivalence class => symbols are equal.
|
|
if (First == Second)
|
|
return true;
|
|
|
|
// Let's check if we know anything about these two classes being not equal to
|
|
// each other.
|
|
ClassSet DisequalToFirst = First.getDisequalClasses(State);
|
|
if (DisequalToFirst.contains(Second))
|
|
return false;
|
|
|
|
// It is not clear.
|
|
return std::nullopt;
|
|
}
|
|
|
|
[[nodiscard]] ProgramStateRef
|
|
EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) {
|
|
|
|
SymbolSet ClsMembers = getClassMembers(State);
|
|
assert(ClsMembers.contains(Old));
|
|
|
|
// Remove `Old`'s Class->Sym relation.
|
|
SymbolSet::Factory &F = getMembersFactory(State);
|
|
ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
|
|
ClsMembers = F.remove(ClsMembers, Old);
|
|
// Ensure another precondition of the removeMember function (we can check
|
|
// this only with isEmpty, thus we have to do the remove first).
|
|
assert(!ClsMembers.isEmpty() &&
|
|
"Class should have had at least two members before member removal");
|
|
// Overwrite the existing members assigned to this class.
|
|
ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
|
|
ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers);
|
|
State = State->set<ClassMembers>(ClassMembersMap);
|
|
|
|
// Remove `Old`'s Sym->Class relation.
|
|
ClassMapTy Classes = State->get<ClassMap>();
|
|
ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
|
|
Classes = CMF.remove(Classes, Old);
|
|
State = State->set<ClassMap>(Classes);
|
|
|
|
return State;
|
|
}
|
|
|
|
// Re-evaluate an SVal with top-level `State->assume` logic.
|
|
[[nodiscard]] ProgramStateRef
|
|
reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) {
|
|
if (!Constraint)
|
|
return State;
|
|
|
|
const auto DefinedVal = TheValue.castAs<DefinedSVal>();
|
|
|
|
// If the SVal is 0, we can simply interpret that as `false`.
|
|
if (Constraint->encodesFalseRange())
|
|
return State->assume(DefinedVal, false);
|
|
|
|
// If the constraint does not encode 0 then we can interpret that as `true`
|
|
// AND as a Range(Set).
|
|
if (Constraint->encodesTrueRange()) {
|
|
State = State->assume(DefinedVal, true);
|
|
if (!State)
|
|
return nullptr;
|
|
// Fall through, re-assume based on the range values as well.
|
|
}
|
|
// Overestimate the individual Ranges with the RangeSet' lowest and
|
|
// highest values.
|
|
return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(),
|
|
Constraint->getMaxValue(), true);
|
|
}
|
|
|
|
// Iterate over all symbols and try to simplify them. Once a symbol is
|
|
// simplified then we check if we can merge the simplified symbol's equivalence
|
|
// class to this class. This way, we simplify not just the symbols but the
|
|
// classes as well: we strive to keep the number of the classes to be the
|
|
// absolute minimum.
|
|
[[nodiscard]] ProgramStateRef
|
|
EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F,
|
|
ProgramStateRef State, EquivalenceClass Class) {
|
|
SymbolSet ClassMembers = Class.getClassMembers(State);
|
|
for (const SymbolRef &MemberSym : ClassMembers) {
|
|
|
|
const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym);
|
|
const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol();
|
|
|
|
// The symbol is collapsed to a constant, check if the current State is
|
|
// still feasible.
|
|
if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) {
|
|
const llvm::APSInt &SV = CI->getValue();
|
|
const RangeSet *ClassConstraint = getConstraint(State, Class);
|
|
// We have found a contradiction.
|
|
if (ClassConstraint && !ClassConstraint->contains(SV))
|
|
return nullptr;
|
|
}
|
|
|
|
if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) {
|
|
// The simplified symbol should be the member of the original Class,
|
|
// however, it might be in another existing class at the moment. We
|
|
// have to merge these classes.
|
|
ProgramStateRef OldState = State;
|
|
State = merge(F, State, MemberSym, SimplifiedMemberSym);
|
|
if (!State)
|
|
return nullptr;
|
|
// No state change, no merge happened actually.
|
|
if (OldState == State)
|
|
continue;
|
|
|
|
assert(find(State, MemberSym) == find(State, SimplifiedMemberSym));
|
|
// Remove the old and more complex symbol.
|
|
State = find(State, MemberSym).removeMember(State, MemberSym);
|
|
|
|
// Query the class constraint again b/c that may have changed during the
|
|
// merge above.
|
|
const RangeSet *ClassConstraint = getConstraint(State, Class);
|
|
|
|
// Re-evaluate an SVal with top-level `State->assume`, this ignites
|
|
// a RECURSIVE algorithm that will reach a FIXPOINT.
|
|
//
|
|
// About performance and complexity: Let us assume that in a State we
|
|
// have N non-trivial equivalence classes and that all constraints and
|
|
// disequality info is related to non-trivial classes. In the worst case,
|
|
// we can simplify only one symbol of one class in each iteration. The
|
|
// number of symbols in one class cannot grow b/c we replace the old
|
|
// symbol with the simplified one. Also, the number of the equivalence
|
|
// classes can decrease only, b/c the algorithm does a merge operation
|
|
// optionally. We need N iterations in this case to reach the fixpoint.
|
|
// Thus, the steps needed to be done in the worst case is proportional to
|
|
// N*N.
|
|
//
|
|
// This worst case scenario can be extended to that case when we have
|
|
// trivial classes in the constraints and in the disequality map. This
|
|
// case can be reduced to the case with a State where there are only
|
|
// non-trivial classes. This is because a merge operation on two trivial
|
|
// classes results in one non-trivial class.
|
|
State = reAssume(State, ClassConstraint, SimplifiedMemberVal);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
}
|
|
return State;
|
|
}
|
|
|
|
inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return find(State, Sym).getDisequalClasses(State);
|
|
}
|
|
|
|
inline ClassSet
|
|
EquivalenceClass::getDisequalClasses(ProgramStateRef State) const {
|
|
return getDisequalClasses(State->get<DisequalityMap>(),
|
|
State->get_context<ClassSet>());
|
|
}
|
|
|
|
inline ClassSet
|
|
EquivalenceClass::getDisequalClasses(DisequalityMapTy Map,
|
|
ClassSet::Factory &Factory) const {
|
|
if (const ClassSet *DisequalClasses = Map.lookup(*this))
|
|
return *DisequalClasses;
|
|
|
|
return Factory.getEmptySet();
|
|
}
|
|
|
|
bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) {
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) {
|
|
for (SymbolRef Member : ClassMembersPair.second) {
|
|
// Every member of the class should have a mapping back to the class.
|
|
if (find(State, Member) == ClassMembersPair.first) {
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DisequalityMapTy Disequalities = State->get<DisequalityMap>();
|
|
for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) {
|
|
EquivalenceClass Class = DisequalityInfo.first;
|
|
ClassSet DisequalClasses = DisequalityInfo.second;
|
|
|
|
// There is no use in keeping empty sets in the map.
|
|
if (DisequalClasses.isEmpty())
|
|
return false;
|
|
|
|
// Disequality is symmetrical, i.e. for every Class A and B that A != B,
|
|
// B != A should also be true.
|
|
for (EquivalenceClass DisequalClass : DisequalClasses) {
|
|
const ClassSet *DisequalToDisequalClasses =
|
|
Disequalities.lookup(DisequalClass);
|
|
|
|
// It should be a set of at least one element: Class
|
|
if (!DisequalToDisequalClasses ||
|
|
!DisequalToDisequalClasses->contains(Class))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RangeConstraintManager implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool RangeConstraintManager::canReasonAbout(SVal X) const {
|
|
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
|
|
if (SymVal && SymVal->isExpression()) {
|
|
const SymExpr *SE = SymVal->getSymbol();
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
return false;
|
|
// We don't reason yet about these arithmetic constraints on
|
|
// symbolic values.
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
|
|
// FIXME: Handle <=> here.
|
|
if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
|
|
BinaryOperator::isRelationalOp(SSE->getOpcode())) {
|
|
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
|
|
// We've recently started producing Loc <> NonLoc comparisons (that
|
|
// result from casts of one of the operands between eg. intptr_t and
|
|
// void *), but we can't reason about them yet.
|
|
if (Loc::isLocType(SSE->getLHS()->getType())) {
|
|
return Loc::isLocType(SSE->getRHS()->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
const RangeSet *Ranges = getConstraint(State, Sym);
|
|
|
|
// If we don't have any information about this symbol, it's underconstrained.
|
|
if (!Ranges)
|
|
return ConditionTruthVal();
|
|
|
|
// If we have a concrete value, see if it's zero.
|
|
if (const llvm::APSInt *Value = Ranges->getConcreteValue())
|
|
return *Value == 0;
|
|
|
|
BasicValueFactory &BV = getBasicVals();
|
|
APSIntType IntType = BV.getAPSIntType(Sym->getType());
|
|
llvm::APSInt Zero = IntType.getZeroValue();
|
|
|
|
// Check if zero is in the set of possible values.
|
|
if (!Ranges->contains(Zero))
|
|
return false;
|
|
|
|
// Zero is a possible value, but it is not the /only/ possible value.
|
|
return ConditionTruthVal();
|
|
}
|
|
|
|
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
|
|
SymbolRef Sym) const {
|
|
const RangeSet *T = getConstraint(St, Sym);
|
|
return T ? T->getConcreteValue() : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Remove dead symbols from existing constraints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
|
|
/// as marked in LSymbols, mark it as dead in DSymbols.
|
|
ProgramStateRef
|
|
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) {
|
|
ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
|
|
ClassMembersTy NewClassMembersMap = ClassMembersMap;
|
|
ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
|
|
SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>();
|
|
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
ConstraintRangeTy NewConstraints = Constraints;
|
|
ConstraintRangeTy::Factory &ConstraintFactory =
|
|
State->get_context<ConstraintRange>();
|
|
|
|
ClassMapTy Map = State->get<ClassMap>();
|
|
ClassMapTy NewMap = Map;
|
|
ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>();
|
|
|
|
DisequalityMapTy Disequalities = State->get<DisequalityMap>();
|
|
DisequalityMapTy::Factory &DisequalityFactory =
|
|
State->get_context<DisequalityMap>();
|
|
ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>();
|
|
|
|
bool ClassMapChanged = false;
|
|
bool MembersMapChanged = false;
|
|
bool ConstraintMapChanged = false;
|
|
bool DisequalitiesChanged = false;
|
|
|
|
auto removeDeadClass = [&](EquivalenceClass Class) {
|
|
// Remove associated constraint ranges.
|
|
Constraints = ConstraintFactory.remove(Constraints, Class);
|
|
ConstraintMapChanged = true;
|
|
|
|
// Update disequality information to not hold any information on the
|
|
// removed class.
|
|
ClassSet DisequalClasses =
|
|
Class.getDisequalClasses(Disequalities, ClassSetFactory);
|
|
if (!DisequalClasses.isEmpty()) {
|
|
for (EquivalenceClass DisequalClass : DisequalClasses) {
|
|
ClassSet DisequalToDisequalSet =
|
|
DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory);
|
|
// DisequalToDisequalSet is guaranteed to be non-empty for consistent
|
|
// disequality info.
|
|
assert(!DisequalToDisequalSet.isEmpty());
|
|
ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class);
|
|
|
|
// No need in keeping an empty set.
|
|
if (NewSet.isEmpty()) {
|
|
Disequalities =
|
|
DisequalityFactory.remove(Disequalities, DisequalClass);
|
|
} else {
|
|
Disequalities =
|
|
DisequalityFactory.add(Disequalities, DisequalClass, NewSet);
|
|
}
|
|
}
|
|
// Remove the data for the class
|
|
Disequalities = DisequalityFactory.remove(Disequalities, Class);
|
|
DisequalitiesChanged = true;
|
|
}
|
|
};
|
|
|
|
// 1. Let's see if dead symbols are trivial and have associated constraints.
|
|
for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair :
|
|
Constraints) {
|
|
EquivalenceClass Class = ClassConstraintPair.first;
|
|
if (Class.isTriviallyDead(State, SymReaper)) {
|
|
// If this class is trivial, we can remove its constraints right away.
|
|
removeDeadClass(Class);
|
|
}
|
|
}
|
|
|
|
// 2. We don't need to track classes for dead symbols.
|
|
for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) {
|
|
SymbolRef Sym = SymbolClassPair.first;
|
|
|
|
if (SymReaper.isDead(Sym)) {
|
|
ClassMapChanged = true;
|
|
NewMap = ClassFactory.remove(NewMap, Sym);
|
|
}
|
|
}
|
|
|
|
// 3. Remove dead members from classes and remove dead non-trivial classes
|
|
// and their constraints.
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair :
|
|
ClassMembersMap) {
|
|
EquivalenceClass Class = ClassMembersPair.first;
|
|
SymbolSet LiveMembers = ClassMembersPair.second;
|
|
bool MembersChanged = false;
|
|
|
|
for (SymbolRef Member : ClassMembersPair.second) {
|
|
if (SymReaper.isDead(Member)) {
|
|
MembersChanged = true;
|
|
LiveMembers = SetFactory.remove(LiveMembers, Member);
|
|
}
|
|
}
|
|
|
|
// Check if the class changed.
|
|
if (!MembersChanged)
|
|
continue;
|
|
|
|
MembersMapChanged = true;
|
|
|
|
if (LiveMembers.isEmpty()) {
|
|
// The class is dead now, we need to wipe it out of the members map...
|
|
NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class);
|
|
|
|
// ...and remove all of its constraints.
|
|
removeDeadClass(Class);
|
|
} else {
|
|
// We need to change the members associated with the class.
|
|
NewClassMembersMap =
|
|
EMFactory.add(NewClassMembersMap, Class, LiveMembers);
|
|
}
|
|
}
|
|
|
|
// 4. Update the state with new maps.
|
|
//
|
|
// Here we try to be humble and update a map only if it really changed.
|
|
if (ClassMapChanged)
|
|
State = State->set<ClassMap>(NewMap);
|
|
|
|
if (MembersMapChanged)
|
|
State = State->set<ClassMembers>(NewClassMembersMap);
|
|
|
|
if (ConstraintMapChanged)
|
|
State = State->set<ConstraintRange>(Constraints);
|
|
|
|
if (DisequalitiesChanged)
|
|
State = State->set<DisequalityMap>(Disequalities);
|
|
|
|
assert(EquivalenceClass::isClassDataConsistent(State));
|
|
|
|
return State;
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return SymbolicRangeInferrer::inferRange(F, State, Sym);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State,
|
|
SymbolRef Sym,
|
|
RangeSet Range) {
|
|
return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range);
|
|
}
|
|
|
|
//===------------------------------------------------------------------------===
|
|
// assumeSymX methods: protected interface for RangeConstraintManager.
|
|
//===------------------------------------------------------------------------===/
|
|
|
|
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
|
|
// and (x, y) for open ranges. These ranges are modular, corresponding with
|
|
// a common treatment of C integer overflow. This means that these methods
|
|
// do not have to worry about overflow; RangeSet::Intersect can handle such a
|
|
// "wraparound" range.
|
|
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
|
|
// UINT_MAX, 0, 1, and 2.
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return St;
|
|
|
|
llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment;
|
|
RangeSet New = getRange(St, Sym);
|
|
New = F.deletePoint(New, Point);
|
|
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return nullptr;
|
|
|
|
// [Int-Adjustment, Int-Adjustment]
|
|
llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
|
|
RangeSet New = getRange(St, Sym);
|
|
New = F.intersect(New, AdjInt);
|
|
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return getRange(St, Sym);
|
|
}
|
|
|
|
// Special case for Int == Min. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
--Upper;
|
|
|
|
RangeSet Result = getRange(St, Sym);
|
|
return F.intersect(Result, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
++Lower;
|
|
|
|
RangeSet SymRange = getRange(St, Sym);
|
|
return F.intersect(SymRange, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Min. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return getRange(St, Sym);
|
|
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
|
|
RangeSet SymRange = getRange(St, Sym);
|
|
return F.intersect(SymRange, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet
|
|
RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return RS();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return RS();
|
|
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
|
|
RangeSet Default = RS();
|
|
return F.intersect(Default, Lower, Upper);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(State, Sym, From, Adjustment);
|
|
if (New.isEmpty())
|
|
return nullptr;
|
|
RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
|
|
return setRange(State, Sym, Out);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
|
|
RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
|
|
RangeSet New(F.add(RangeLT, RangeGT));
|
|
return setRange(State, Sym, New);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pretty-printing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, unsigned int Space,
|
|
bool IsDot) const {
|
|
printConstraints(Out, State, NL, Space, IsDot);
|
|
printEquivalenceClasses(Out, State, NL, Space, IsDot);
|
|
printDisequalities(Out, State, NL, Space, IsDot);
|
|
}
|
|
|
|
void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
const RangeSet RS = getRange(State, Sym);
|
|
Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:");
|
|
RS.dump(Out);
|
|
}
|
|
|
|
static std::string toString(const SymbolRef &Sym) {
|
|
std::string S;
|
|
llvm::raw_string_ostream O(S);
|
|
Sym->dumpToStream(O);
|
|
return O.str();
|
|
}
|
|
|
|
void RangeConstraintManager::printConstraints(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
unsigned int Space,
|
|
bool IsDot) const {
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"constraints\": ";
|
|
if (Constraints.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
std::map<std::string, RangeSet> OrderedConstraints;
|
|
for (std::pair<EquivalenceClass, RangeSet> P : Constraints) {
|
|
SymbolSet ClassMembers = P.first.getClassMembers(State);
|
|
for (const SymbolRef &ClassMember : ClassMembers) {
|
|
bool insertion_took_place;
|
|
std::tie(std::ignore, insertion_took_place) =
|
|
OrderedConstraints.insert({toString(ClassMember), P.second});
|
|
assert(insertion_took_place &&
|
|
"two symbols should not have the same dump");
|
|
}
|
|
}
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
bool First = true;
|
|
for (std::pair<std::string, RangeSet> P : OrderedConstraints) {
|
|
if (First) {
|
|
First = false;
|
|
} else {
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
Indent(Out, Space, IsDot)
|
|
<< "{ \"symbol\": \"" << P.first << "\", \"range\": \"";
|
|
P.second.dump(Out);
|
|
Out << "\" }";
|
|
}
|
|
Out << NL;
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|
|
|
|
static std::string toString(ProgramStateRef State, EquivalenceClass Class) {
|
|
SymbolSet ClassMembers = Class.getClassMembers(State);
|
|
llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(),
|
|
ClassMembers.end());
|
|
llvm::sort(ClassMembersSorted,
|
|
[](const SymbolRef &LHS, const SymbolRef &RHS) {
|
|
return toString(LHS) < toString(RHS);
|
|
});
|
|
|
|
bool FirstMember = true;
|
|
|
|
std::string Str;
|
|
llvm::raw_string_ostream Out(Str);
|
|
Out << "[ ";
|
|
for (SymbolRef ClassMember : ClassMembersSorted) {
|
|
if (FirstMember)
|
|
FirstMember = false;
|
|
else
|
|
Out << ", ";
|
|
Out << "\"" << ClassMember << "\"";
|
|
}
|
|
Out << " ]";
|
|
return Out.str();
|
|
}
|
|
|
|
void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
unsigned int Space,
|
|
bool IsDot) const {
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"equivalence_classes\": ";
|
|
if (Members.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
std::set<std::string> MembersStr;
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members)
|
|
MembersStr.insert(toString(State, ClassToSymbolSet.first));
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
bool FirstClass = true;
|
|
for (const std::string &Str : MembersStr) {
|
|
if (FirstClass) {
|
|
FirstClass = false;
|
|
} else {
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
Indent(Out, Space, IsDot);
|
|
Out << Str;
|
|
}
|
|
Out << NL;
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|
|
|
|
void RangeConstraintManager::printDisequalities(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
unsigned int Space,
|
|
bool IsDot) const {
|
|
DisequalityMapTy Disequalities = State->get<DisequalityMap>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"disequality_info\": ";
|
|
if (Disequalities.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
// Transform the disequality info to an ordered map of
|
|
// [string -> (ordered set of strings)]
|
|
using EqClassesStrTy = std::set<std::string>;
|
|
using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>;
|
|
DisequalityInfoStrTy DisequalityInfoStr;
|
|
for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) {
|
|
EquivalenceClass Class = ClassToDisEqSet.first;
|
|
ClassSet DisequalClasses = ClassToDisEqSet.second;
|
|
EqClassesStrTy MembersStr;
|
|
for (EquivalenceClass DisEqClass : DisequalClasses)
|
|
MembersStr.insert(toString(State, DisEqClass));
|
|
DisequalityInfoStr.insert({toString(State, Class), MembersStr});
|
|
}
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
bool FirstClass = true;
|
|
for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet :
|
|
DisequalityInfoStr) {
|
|
const std::string &Class = ClassToDisEqSet.first;
|
|
if (FirstClass) {
|
|
FirstClass = false;
|
|
} else {
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
Indent(Out, Space, IsDot) << "{" << NL;
|
|
unsigned int DisEqSpace = Space + 1;
|
|
Indent(Out, DisEqSpace, IsDot) << "\"class\": ";
|
|
Out << Class;
|
|
const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second;
|
|
if (!DisequalClasses.empty()) {
|
|
Out << "," << NL;
|
|
Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL;
|
|
unsigned int DisEqClassSpace = DisEqSpace + 1;
|
|
Indent(Out, DisEqClassSpace, IsDot);
|
|
bool FirstDisEqClass = true;
|
|
for (const std::string &DisEqClass : DisequalClasses) {
|
|
if (FirstDisEqClass) {
|
|
FirstDisEqClass = false;
|
|
} else {
|
|
Out << ',' << NL;
|
|
Indent(Out, DisEqClassSpace, IsDot);
|
|
}
|
|
Out << DisEqClass;
|
|
}
|
|
Out << "]" << NL;
|
|
}
|
|
Indent(Out, Space, IsDot) << "}";
|
|
}
|
|
Out << NL;
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|