forked from OSchip/llvm-project
3247 lines
128 KiB
C++
3247 lines
128 KiB
C++
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64TargetTransformInfo.h"
|
|
#include "AArch64ExpandImm.h"
|
|
#include "AArch64PerfectShuffle.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsAArch64.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
|
|
#include <algorithm>
|
|
#include <optional>
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "aarch64tti"
|
|
|
|
static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
|
|
cl::init(10), cl::Hidden);
|
|
|
|
class TailFoldingKind {
|
|
private:
|
|
uint8_t Bits = 0; // Currently defaults to disabled.
|
|
|
|
public:
|
|
enum TailFoldingOpts {
|
|
TFDisabled = 0x0,
|
|
TFReductions = 0x01,
|
|
TFRecurrences = 0x02,
|
|
TFSimple = 0x80,
|
|
TFAll = TFReductions | TFRecurrences | TFSimple
|
|
};
|
|
|
|
void operator=(const std::string &Val) {
|
|
if (Val.empty())
|
|
return;
|
|
SmallVector<StringRef, 6> TailFoldTypes;
|
|
StringRef(Val).split(TailFoldTypes, '+', -1, false);
|
|
for (auto TailFoldType : TailFoldTypes) {
|
|
if (TailFoldType == "disabled")
|
|
Bits = 0;
|
|
else if (TailFoldType == "all")
|
|
Bits = TFAll;
|
|
else if (TailFoldType == "default")
|
|
Bits = 0; // Currently defaults to never tail-folding.
|
|
else if (TailFoldType == "simple")
|
|
add(TFSimple);
|
|
else if (TailFoldType == "reductions")
|
|
add(TFReductions);
|
|
else if (TailFoldType == "recurrences")
|
|
add(TFRecurrences);
|
|
else if (TailFoldType == "noreductions")
|
|
remove(TFReductions);
|
|
else if (TailFoldType == "norecurrences")
|
|
remove(TFRecurrences);
|
|
else {
|
|
errs()
|
|
<< "invalid argument " << TailFoldType.str()
|
|
<< " to -sve-tail-folding=; each element must be one of: disabled, "
|
|
"all, default, simple, reductions, noreductions, recurrences, "
|
|
"norecurrences\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
operator uint8_t() const { return Bits; }
|
|
|
|
void add(uint8_t Flag) { Bits |= Flag; }
|
|
void remove(uint8_t Flag) { Bits &= ~Flag; }
|
|
};
|
|
|
|
TailFoldingKind TailFoldingKindLoc;
|
|
|
|
cl::opt<TailFoldingKind, true, cl::parser<std::string>> SVETailFolding(
|
|
"sve-tail-folding",
|
|
cl::desc(
|
|
"Control the use of vectorisation using tail-folding for SVE:"
|
|
"\ndisabled No loop types will vectorize using tail-folding"
|
|
"\ndefault Uses the default tail-folding settings for the target "
|
|
"CPU"
|
|
"\nall All legal loop types will vectorize using tail-folding"
|
|
"\nsimple Use tail-folding for simple loops (not reductions or "
|
|
"recurrences)"
|
|
"\nreductions Use tail-folding for loops containing reductions"
|
|
"\nrecurrences Use tail-folding for loops containing fixed order "
|
|
"recurrences"),
|
|
cl::location(TailFoldingKindLoc));
|
|
|
|
// Experimental option that will only be fully functional when the
|
|
// code-generator is changed to use SVE instead of NEON for all fixed-width
|
|
// operations.
|
|
static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
|
|
"enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
|
|
|
|
// Experimental option that will only be fully functional when the cost-model
|
|
// and code-generator have been changed to avoid using scalable vector
|
|
// instructions that are not legal in streaming SVE mode.
|
|
static cl::opt<bool> EnableScalableAutovecInStreamingMode(
|
|
"enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
|
|
|
|
bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
SMEAttrs CallerAttrs(*Caller);
|
|
SMEAttrs CalleeAttrs(*Callee);
|
|
if (CallerAttrs.requiresSMChange(CalleeAttrs,
|
|
/*BodyOverridesInterface=*/true) ||
|
|
CallerAttrs.requiresLazySave(CalleeAttrs) ||
|
|
CalleeAttrs.hasNewZAInterface())
|
|
return false;
|
|
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
|
|
const FeatureBitset &CallerBits =
|
|
TM.getSubtargetImpl(*Caller)->getFeatureBits();
|
|
const FeatureBitset &CalleeBits =
|
|
TM.getSubtargetImpl(*Callee)->getFeatureBits();
|
|
|
|
// Inline a callee if its target-features are a subset of the callers
|
|
// target-features.
|
|
return (CallerBits & CalleeBits) == CalleeBits;
|
|
}
|
|
|
|
bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
|
|
TargetTransformInfo::RegisterKind K) const {
|
|
assert(K != TargetTransformInfo::RGK_Scalar);
|
|
return K == TargetTransformInfo::RGK_FixedWidthVector;
|
|
}
|
|
|
|
/// Calculate the cost of materializing a 64-bit value. This helper
|
|
/// method might only calculate a fraction of a larger immediate. Therefore it
|
|
/// is valid to return a cost of ZERO.
|
|
InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
|
|
// Check if the immediate can be encoded within an instruction.
|
|
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
|
|
return 0;
|
|
|
|
if (Val < 0)
|
|
Val = ~Val;
|
|
|
|
// Calculate how many moves we will need to materialize this constant.
|
|
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
|
|
AArch64_IMM::expandMOVImm(Val, 64, Insn);
|
|
return Insn.size();
|
|
}
|
|
|
|
/// Calculate the cost of materializing the given constant.
|
|
InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
// Sign-extend all constants to a multiple of 64-bit.
|
|
APInt ImmVal = Imm;
|
|
if (BitSize & 0x3f)
|
|
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
|
|
|
|
// Split the constant into 64-bit chunks and calculate the cost for each
|
|
// chunk.
|
|
InstructionCost Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
|
|
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
|
|
int64_t Val = Tmp.getSExtValue();
|
|
Cost += getIntImmCost(Val);
|
|
}
|
|
// We need at least one instruction to materialze the constant.
|
|
return std::max<InstructionCost>(1, Cost);
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
unsigned ImmIdx = ~0U;
|
|
switch (Opcode) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr.
|
|
if (Idx == 0)
|
|
return 2 * TTI::TCC_Basic;
|
|
return TTI::TCC_Free;
|
|
case Instruction::Store:
|
|
ImmIdx = 0;
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
ImmIdx = 1;
|
|
break;
|
|
// Always return TCC_Free for the shift value of a shift instruction.
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
if (Idx == 1)
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Select:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
break;
|
|
}
|
|
|
|
if (Idx == ImmIdx) {
|
|
int NumConstants = (BitSize + 63) / 64;
|
|
InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
return (Cost <= NumConstants * TTI::TCC_Basic)
|
|
? static_cast<int>(TTI::TCC_Free)
|
|
: Cost;
|
|
}
|
|
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
// Most (all?) AArch64 intrinsics do not support folding immediates into the
|
|
// selected instruction, so we compute the materialization cost for the
|
|
// immediate directly.
|
|
if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
|
|
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
if (Idx == 1) {
|
|
int NumConstants = (BitSize + 63) / 64;
|
|
InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
return (Cost <= NumConstants * TTI::TCC_Basic)
|
|
? static_cast<int>(TTI::TCC_Free)
|
|
: Cost;
|
|
}
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
}
|
|
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
if (TyWidth == 32 || TyWidth == 64)
|
|
return TTI::PSK_FastHardware;
|
|
// TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
|
|
return TTI::PSK_Software;
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
auto *RetTy = ICA.getReturnType();
|
|
switch (ICA.getID()) {
|
|
case Intrinsic::umin:
|
|
case Intrinsic::umax:
|
|
case Intrinsic::smin:
|
|
case Intrinsic::smax: {
|
|
static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
|
|
MVT::v8i16, MVT::v2i32, MVT::v4i32};
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
// v2i64 types get converted to cmp+bif hence the cost of 2
|
|
if (LT.second == MVT::v2i64)
|
|
return LT.first * 2;
|
|
if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }))
|
|
return LT.first;
|
|
break;
|
|
}
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::usub_sat: {
|
|
static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
|
|
MVT::v8i16, MVT::v2i32, MVT::v4i32,
|
|
MVT::v2i64};
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
// This is a base cost of 1 for the vadd, plus 3 extract shifts if we
|
|
// need to extend the type, as it uses shr(qadd(shl, shl)).
|
|
unsigned Instrs =
|
|
LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
|
|
if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; }))
|
|
return LT.first * Instrs;
|
|
break;
|
|
}
|
|
case Intrinsic::abs: {
|
|
static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
|
|
MVT::v8i16, MVT::v2i32, MVT::v4i32,
|
|
MVT::v2i64};
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; }))
|
|
return LT.first;
|
|
break;
|
|
}
|
|
case Intrinsic::experimental_stepvector: {
|
|
InstructionCost Cost = 1; // Cost of the `index' instruction
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
// Legalisation of illegal vectors involves an `index' instruction plus
|
|
// (LT.first - 1) vector adds.
|
|
if (LT.first > 1) {
|
|
Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
|
|
InstructionCost AddCost =
|
|
getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
|
|
Cost += AddCost * (LT.first - 1);
|
|
}
|
|
return Cost;
|
|
}
|
|
case Intrinsic::bitreverse: {
|
|
static const CostTblEntry BitreverseTbl[] = {
|
|
{Intrinsic::bitreverse, MVT::i32, 1},
|
|
{Intrinsic::bitreverse, MVT::i64, 1},
|
|
{Intrinsic::bitreverse, MVT::v8i8, 1},
|
|
{Intrinsic::bitreverse, MVT::v16i8, 1},
|
|
{Intrinsic::bitreverse, MVT::v4i16, 2},
|
|
{Intrinsic::bitreverse, MVT::v8i16, 2},
|
|
{Intrinsic::bitreverse, MVT::v2i32, 2},
|
|
{Intrinsic::bitreverse, MVT::v4i32, 2},
|
|
{Intrinsic::bitreverse, MVT::v1i64, 2},
|
|
{Intrinsic::bitreverse, MVT::v2i64, 2},
|
|
};
|
|
const auto LegalisationCost = getTypeLegalizationCost(RetTy);
|
|
const auto *Entry =
|
|
CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
|
|
if (Entry) {
|
|
// Cost Model is using the legal type(i32) that i8 and i16 will be
|
|
// converted to +1 so that we match the actual lowering cost
|
|
if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
|
|
TLI->getValueType(DL, RetTy, true) == MVT::i16)
|
|
return LegalisationCost.first * Entry->Cost + 1;
|
|
|
|
return LegalisationCost.first * Entry->Cost;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::ctpop: {
|
|
if (!ST->hasNEON()) {
|
|
// 32-bit or 64-bit ctpop without NEON is 12 instructions.
|
|
return getTypeLegalizationCost(RetTy).first * 12;
|
|
}
|
|
static const CostTblEntry CtpopCostTbl[] = {
|
|
{ISD::CTPOP, MVT::v2i64, 4},
|
|
{ISD::CTPOP, MVT::v4i32, 3},
|
|
{ISD::CTPOP, MVT::v8i16, 2},
|
|
{ISD::CTPOP, MVT::v16i8, 1},
|
|
{ISD::CTPOP, MVT::i64, 4},
|
|
{ISD::CTPOP, MVT::v2i32, 3},
|
|
{ISD::CTPOP, MVT::v4i16, 2},
|
|
{ISD::CTPOP, MVT::v8i8, 1},
|
|
{ISD::CTPOP, MVT::i32, 5},
|
|
};
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
MVT MTy = LT.second;
|
|
if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
|
|
// Extra cost of +1 when illegal vector types are legalized by promoting
|
|
// the integer type.
|
|
int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
|
|
RetTy->getScalarSizeInBits()
|
|
? 1
|
|
: 0;
|
|
return LT.first * Entry->Cost + ExtraCost;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow: {
|
|
static const CostTblEntry WithOverflowCostTbl[] = {
|
|
{Intrinsic::sadd_with_overflow, MVT::i8, 3},
|
|
{Intrinsic::uadd_with_overflow, MVT::i8, 3},
|
|
{Intrinsic::sadd_with_overflow, MVT::i16, 3},
|
|
{Intrinsic::uadd_with_overflow, MVT::i16, 3},
|
|
{Intrinsic::sadd_with_overflow, MVT::i32, 1},
|
|
{Intrinsic::uadd_with_overflow, MVT::i32, 1},
|
|
{Intrinsic::sadd_with_overflow, MVT::i64, 1},
|
|
{Intrinsic::uadd_with_overflow, MVT::i64, 1},
|
|
{Intrinsic::ssub_with_overflow, MVT::i8, 3},
|
|
{Intrinsic::usub_with_overflow, MVT::i8, 3},
|
|
{Intrinsic::ssub_with_overflow, MVT::i16, 3},
|
|
{Intrinsic::usub_with_overflow, MVT::i16, 3},
|
|
{Intrinsic::ssub_with_overflow, MVT::i32, 1},
|
|
{Intrinsic::usub_with_overflow, MVT::i32, 1},
|
|
{Intrinsic::ssub_with_overflow, MVT::i64, 1},
|
|
{Intrinsic::usub_with_overflow, MVT::i64, 1},
|
|
{Intrinsic::smul_with_overflow, MVT::i8, 5},
|
|
{Intrinsic::umul_with_overflow, MVT::i8, 4},
|
|
{Intrinsic::smul_with_overflow, MVT::i16, 5},
|
|
{Intrinsic::umul_with_overflow, MVT::i16, 4},
|
|
{Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
|
|
{Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
|
|
{Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
|
|
{Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
|
|
};
|
|
EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
|
|
if (MTy.isSimple())
|
|
if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
|
|
MTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
break;
|
|
}
|
|
case Intrinsic::fptosi_sat:
|
|
case Intrinsic::fptoui_sat: {
|
|
if (ICA.getArgTypes().empty())
|
|
break;
|
|
bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
|
|
auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
|
|
EVT MTy = TLI->getValueType(DL, RetTy);
|
|
// Check for the legal types, which are where the size of the input and the
|
|
// output are the same, or we are using cvt f64->i32 or f32->i64.
|
|
if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
|
|
LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
|
|
LT.second == MVT::v2f64) &&
|
|
(LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
|
|
(LT.second == MVT::f64 && MTy == MVT::i32) ||
|
|
(LT.second == MVT::f32 && MTy == MVT::i64)))
|
|
return LT.first;
|
|
// Similarly for fp16 sizes
|
|
if (ST->hasFullFP16() &&
|
|
((LT.second == MVT::f16 && MTy == MVT::i32) ||
|
|
((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
|
|
(LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
|
|
return LT.first;
|
|
|
|
// Otherwise we use a legal convert followed by a min+max
|
|
if ((LT.second.getScalarType() == MVT::f32 ||
|
|
LT.second.getScalarType() == MVT::f64 ||
|
|
(ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
|
|
LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
|
|
Type *LegalTy =
|
|
Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits());
|
|
if (LT.second.isVector())
|
|
LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount());
|
|
InstructionCost Cost = 1;
|
|
IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
|
|
LegalTy, {LegalTy, LegalTy});
|
|
Cost += getIntrinsicInstrCost(Attrs1, CostKind);
|
|
IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
|
|
LegalTy, {LegalTy, LegalTy});
|
|
Cost += getIntrinsicInstrCost(Attrs2, CostKind);
|
|
return LT.first * Cost;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
/// The function will remove redundant reinterprets casting in the presence
|
|
/// of the control flow
|
|
static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
SmallVector<Instruction *, 32> Worklist;
|
|
auto RequiredType = II.getType();
|
|
|
|
auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
|
|
assert(PN && "Expected Phi Node!");
|
|
|
|
// Don't create a new Phi unless we can remove the old one.
|
|
if (!PN->hasOneUse())
|
|
return std::nullopt;
|
|
|
|
for (Value *IncValPhi : PN->incoming_values()) {
|
|
auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
|
|
if (!Reinterpret ||
|
|
Reinterpret->getIntrinsicID() !=
|
|
Intrinsic::aarch64_sve_convert_to_svbool ||
|
|
RequiredType != Reinterpret->getArgOperand(0)->getType())
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Create the new Phi
|
|
LLVMContext &Ctx = PN->getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
Builder.SetInsertPoint(PN);
|
|
PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
|
|
Worklist.push_back(PN);
|
|
|
|
for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
|
|
auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
|
|
NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
|
|
Worklist.push_back(Reinterpret);
|
|
}
|
|
|
|
// Cleanup Phi Node and reinterprets
|
|
return IC.replaceInstUsesWith(II, NPN);
|
|
}
|
|
|
|
// (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
|
|
// => (binop (pred) (from_svbool _) (from_svbool _))
|
|
//
|
|
// The above transformation eliminates a `to_svbool` in the predicate
|
|
// operand of bitwise operation `binop` by narrowing the vector width of
|
|
// the operation. For example, it would convert a `<vscale x 16 x i1>
|
|
// and` into a `<vscale x 4 x i1> and`. This is profitable because
|
|
// to_svbool must zero the new lanes during widening, whereas
|
|
// from_svbool is free.
|
|
static std::optional<Instruction *>
|
|
tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
|
|
auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
|
|
if (!BinOp)
|
|
return std::nullopt;
|
|
|
|
auto IntrinsicID = BinOp->getIntrinsicID();
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::aarch64_sve_and_z:
|
|
case Intrinsic::aarch64_sve_bic_z:
|
|
case Intrinsic::aarch64_sve_eor_z:
|
|
case Intrinsic::aarch64_sve_nand_z:
|
|
case Intrinsic::aarch64_sve_nor_z:
|
|
case Intrinsic::aarch64_sve_orn_z:
|
|
case Intrinsic::aarch64_sve_orr_z:
|
|
break;
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto BinOpPred = BinOp->getOperand(0);
|
|
auto BinOpOp1 = BinOp->getOperand(1);
|
|
auto BinOpOp2 = BinOp->getOperand(2);
|
|
|
|
auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
|
|
if (!PredIntr ||
|
|
PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
|
|
return std::nullopt;
|
|
|
|
auto PredOp = PredIntr->getOperand(0);
|
|
auto PredOpTy = cast<VectorType>(PredOp->getType());
|
|
if (PredOpTy != II.getType())
|
|
return std::nullopt;
|
|
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
|
|
auto NarrowBinOpOp1 = Builder.CreateIntrinsic(
|
|
Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
|
|
NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
|
|
if (BinOpOp1 == BinOpOp2)
|
|
NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
|
|
else
|
|
NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic(
|
|
Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
|
|
|
|
auto NarrowedBinOp =
|
|
Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
|
|
return IC.replaceInstUsesWith(II, NarrowedBinOp);
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
|
|
// If the reinterpret instruction operand is a PHI Node
|
|
if (isa<PHINode>(II.getArgOperand(0)))
|
|
return processPhiNode(IC, II);
|
|
|
|
if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
|
|
return BinOpCombine;
|
|
|
|
SmallVector<Instruction *, 32> CandidatesForRemoval;
|
|
Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
|
|
|
|
const auto *IVTy = cast<VectorType>(II.getType());
|
|
|
|
// Walk the chain of conversions.
|
|
while (Cursor) {
|
|
// If the type of the cursor has fewer lanes than the final result, zeroing
|
|
// must take place, which breaks the equivalence chain.
|
|
const auto *CursorVTy = cast<VectorType>(Cursor->getType());
|
|
if (CursorVTy->getElementCount().getKnownMinValue() <
|
|
IVTy->getElementCount().getKnownMinValue())
|
|
break;
|
|
|
|
// If the cursor has the same type as I, it is a viable replacement.
|
|
if (Cursor->getType() == IVTy)
|
|
EarliestReplacement = Cursor;
|
|
|
|
auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
|
|
|
|
// If this is not an SVE conversion intrinsic, this is the end of the chain.
|
|
if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
|
|
Intrinsic::aarch64_sve_convert_to_svbool ||
|
|
IntrinsicCursor->getIntrinsicID() ==
|
|
Intrinsic::aarch64_sve_convert_from_svbool))
|
|
break;
|
|
|
|
CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
|
|
Cursor = IntrinsicCursor->getOperand(0);
|
|
}
|
|
|
|
// If no viable replacement in the conversion chain was found, there is
|
|
// nothing to do.
|
|
if (!EarliestReplacement)
|
|
return std::nullopt;
|
|
|
|
return IC.replaceInstUsesWith(II, EarliestReplacement);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
IRBuilder<> Builder(&II);
|
|
auto Select = Builder.CreateSelect(II.getOperand(0), II.getOperand(1),
|
|
II.getOperand(2));
|
|
return IC.replaceInstUsesWith(II, Select);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
|
|
if (!Pg)
|
|
return std::nullopt;
|
|
|
|
if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
|
|
return std::nullopt;
|
|
|
|
const auto PTruePattern =
|
|
cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
|
|
if (PTruePattern != AArch64SVEPredPattern::vl1)
|
|
return std::nullopt;
|
|
|
|
// The intrinsic is inserting into lane zero so use an insert instead.
|
|
auto *IdxTy = Type::getInt64Ty(II.getContext());
|
|
auto *Insert = InsertElementInst::Create(
|
|
II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
|
|
Insert->insertBefore(&II);
|
|
Insert->takeName(&II);
|
|
|
|
return IC.replaceInstUsesWith(II, Insert);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
// Replace DupX with a regular IR splat.
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
auto *RetTy = cast<ScalableVectorType>(II.getType());
|
|
Value *Splat =
|
|
Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
|
|
Splat->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, Splat);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
LLVMContext &Ctx = II.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
// Check that the predicate is all active
|
|
auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
|
|
if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
|
|
return std::nullopt;
|
|
|
|
const auto PTruePattern =
|
|
cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
|
|
if (PTruePattern != AArch64SVEPredPattern::all)
|
|
return std::nullopt;
|
|
|
|
// Check that we have a compare of zero..
|
|
auto *SplatValue =
|
|
dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
|
|
if (!SplatValue || !SplatValue->isZero())
|
|
return std::nullopt;
|
|
|
|
// ..against a dupq
|
|
auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
|
|
if (!DupQLane ||
|
|
DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
|
|
return std::nullopt;
|
|
|
|
// Where the dupq is a lane 0 replicate of a vector insert
|
|
if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
|
|
return std::nullopt;
|
|
|
|
auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
|
|
if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
|
|
return std::nullopt;
|
|
|
|
// Where the vector insert is a fixed constant vector insert into undef at
|
|
// index zero
|
|
if (!isa<UndefValue>(VecIns->getArgOperand(0)))
|
|
return std::nullopt;
|
|
|
|
if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
|
|
return std::nullopt;
|
|
|
|
auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
|
|
if (!ConstVec)
|
|
return std::nullopt;
|
|
|
|
auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
|
|
auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
|
|
if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
|
|
return std::nullopt;
|
|
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
unsigned PredicateBits = 0;
|
|
|
|
// Expand intrinsic operands to a 16-bit byte level predicate
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
|
|
if (!Arg)
|
|
return std::nullopt;
|
|
if (!Arg->isZero())
|
|
PredicateBits |= 1 << (I * (16 / NumElts));
|
|
}
|
|
|
|
// If all bits are zero bail early with an empty predicate
|
|
if (PredicateBits == 0) {
|
|
auto *PFalse = Constant::getNullValue(II.getType());
|
|
PFalse->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, PFalse);
|
|
}
|
|
|
|
// Calculate largest predicate type used (where byte predicate is largest)
|
|
unsigned Mask = 8;
|
|
for (unsigned I = 0; I < 16; ++I)
|
|
if ((PredicateBits & (1 << I)) != 0)
|
|
Mask |= (I % 8);
|
|
|
|
unsigned PredSize = Mask & -Mask;
|
|
auto *PredType = ScalableVectorType::get(
|
|
Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
|
|
|
|
// Ensure all relevant bits are set
|
|
for (unsigned I = 0; I < 16; I += PredSize)
|
|
if ((PredicateBits & (1 << I)) == 0)
|
|
return std::nullopt;
|
|
|
|
auto *PTruePat =
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
|
|
auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
|
|
{PredType}, {PTruePat});
|
|
auto *ConvertToSVBool = Builder.CreateIntrinsic(
|
|
Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
|
|
auto *ConvertFromSVBool =
|
|
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
|
|
{II.getType()}, {ConvertToSVBool});
|
|
|
|
ConvertFromSVBool->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, ConvertFromSVBool);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
Value *Pg = II.getArgOperand(0);
|
|
Value *Vec = II.getArgOperand(1);
|
|
auto IntrinsicID = II.getIntrinsicID();
|
|
bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
|
|
|
|
// lastX(splat(X)) --> X
|
|
if (auto *SplatVal = getSplatValue(Vec))
|
|
return IC.replaceInstUsesWith(II, SplatVal);
|
|
|
|
// If x and/or y is a splat value then:
|
|
// lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
|
|
Value *LHS, *RHS;
|
|
if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
|
|
if (isSplatValue(LHS) || isSplatValue(RHS)) {
|
|
auto *OldBinOp = cast<BinaryOperator>(Vec);
|
|
auto OpC = OldBinOp->getOpcode();
|
|
auto *NewLHS =
|
|
Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
|
|
auto *NewRHS =
|
|
Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
|
|
auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
|
|
OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
|
|
return IC.replaceInstUsesWith(II, NewBinOp);
|
|
}
|
|
}
|
|
|
|
auto *C = dyn_cast<Constant>(Pg);
|
|
if (IsAfter && C && C->isNullValue()) {
|
|
// The intrinsic is extracting lane 0 so use an extract instead.
|
|
auto *IdxTy = Type::getInt64Ty(II.getContext());
|
|
auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
|
|
Extract->insertBefore(&II);
|
|
Extract->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, Extract);
|
|
}
|
|
|
|
auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
|
|
if (!IntrPG)
|
|
return std::nullopt;
|
|
|
|
if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
|
|
return std::nullopt;
|
|
|
|
const auto PTruePattern =
|
|
cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
|
|
|
|
// Can the intrinsic's predicate be converted to a known constant index?
|
|
unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
|
|
if (!MinNumElts)
|
|
return std::nullopt;
|
|
|
|
unsigned Idx = MinNumElts - 1;
|
|
// Increment the index if extracting the element after the last active
|
|
// predicate element.
|
|
if (IsAfter)
|
|
++Idx;
|
|
|
|
// Ignore extracts whose index is larger than the known minimum vector
|
|
// length. NOTE: This is an artificial constraint where we prefer to
|
|
// maintain what the user asked for until an alternative is proven faster.
|
|
auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
|
|
if (Idx >= PgVTy->getMinNumElements())
|
|
return std::nullopt;
|
|
|
|
// The intrinsic is extracting a fixed lane so use an extract instead.
|
|
auto *IdxTy = Type::getInt64Ty(II.getContext());
|
|
auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
|
|
Extract->insertBefore(&II);
|
|
Extract->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, Extract);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
// The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
|
|
// integer variant across a variety of micro-architectures. Replace scalar
|
|
// integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
|
|
// bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
|
|
// depending on the micro-architecture, but has been observed as generally
|
|
// being faster, particularly when the CLAST[AB] op is a loop-carried
|
|
// dependency.
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
Value *Pg = II.getArgOperand(0);
|
|
Value *Fallback = II.getArgOperand(1);
|
|
Value *Vec = II.getArgOperand(2);
|
|
Type *Ty = II.getType();
|
|
|
|
if (!Ty->isIntegerTy())
|
|
return std::nullopt;
|
|
|
|
Type *FPTy;
|
|
switch (cast<IntegerType>(Ty)->getBitWidth()) {
|
|
default:
|
|
return std::nullopt;
|
|
case 16:
|
|
FPTy = Builder.getHalfTy();
|
|
break;
|
|
case 32:
|
|
FPTy = Builder.getFloatTy();
|
|
break;
|
|
case 64:
|
|
FPTy = Builder.getDoubleTy();
|
|
break;
|
|
}
|
|
|
|
Value *FPFallBack = Builder.CreateBitCast(Fallback, FPTy);
|
|
auto *FPVTy = VectorType::get(
|
|
FPTy, cast<VectorType>(Vec->getType())->getElementCount());
|
|
Value *FPVec = Builder.CreateBitCast(Vec, FPVTy);
|
|
auto *FPII = Builder.CreateIntrinsic(II.getIntrinsicID(), {FPVec->getType()},
|
|
{Pg, FPFallBack, FPVec});
|
|
Value *FPIItoInt = Builder.CreateBitCast(FPII, II.getType());
|
|
return IC.replaceInstUsesWith(II, FPIItoInt);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
LLVMContext &Ctx = II.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
Builder.SetInsertPoint(&II);
|
|
// Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
|
|
// can work with RDFFR_PP for ptest elimination.
|
|
auto *AllPat =
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
|
|
auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
|
|
{II.getType()}, {AllPat});
|
|
auto *RDFFR =
|
|
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
|
|
RDFFR->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, RDFFR);
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
|
|
const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
|
|
|
|
if (Pattern == AArch64SVEPredPattern::all) {
|
|
LLVMContext &Ctx = II.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
|
|
auto *VScale = Builder.CreateVScale(StepVal);
|
|
VScale->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, VScale);
|
|
}
|
|
|
|
unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
|
|
|
|
return MinNumElts && NumElts >= MinNumElts
|
|
? std::optional<Instruction *>(IC.replaceInstUsesWith(
|
|
II, ConstantInt::get(II.getType(), MinNumElts)))
|
|
: std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
Value *PgVal = II.getArgOperand(0);
|
|
Value *OpVal = II.getArgOperand(1);
|
|
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
// PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
|
|
// Later optimizations prefer this form.
|
|
if (PgVal == OpVal &&
|
|
(II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
|
|
II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
|
|
Value *Ops[] = {PgVal, OpVal};
|
|
Type *Tys[] = {PgVal->getType()};
|
|
|
|
auto *PTest =
|
|
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
|
|
PTest->takeName(&II);
|
|
|
|
return IC.replaceInstUsesWith(II, PTest);
|
|
}
|
|
|
|
IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(PgVal);
|
|
IntrinsicInst *Op = dyn_cast<IntrinsicInst>(OpVal);
|
|
|
|
if (!Pg || !Op)
|
|
return std::nullopt;
|
|
|
|
Intrinsic::ID OpIID = Op->getIntrinsicID();
|
|
|
|
if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
|
|
OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
|
|
Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
|
|
Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)};
|
|
Type *Tys[] = {Pg->getArgOperand(0)->getType()};
|
|
|
|
auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
|
|
|
|
PTest->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, PTest);
|
|
}
|
|
|
|
// Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
|
|
// Later optimizations may rewrite sequence to use the flag-setting variant
|
|
// of instruction X to remove PTEST.
|
|
if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
|
|
((OpIID == Intrinsic::aarch64_sve_brka_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_brkb_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_and_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_bic_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_eor_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_nand_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_nor_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_orn_z) ||
|
|
(OpIID == Intrinsic::aarch64_sve_orr_z))) {
|
|
Value *Ops[] = {Pg->getArgOperand(0), Pg};
|
|
Type *Tys[] = {Pg->getType()};
|
|
|
|
auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
|
|
PTest->takeName(&II);
|
|
|
|
return IC.replaceInstUsesWith(II, PTest);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineSVEVectorFMLA(InstCombiner &IC, IntrinsicInst &II) {
|
|
// fold (fadd p a (fmul p b c)) -> (fma p a b c)
|
|
Value *P = II.getOperand(0);
|
|
Value *A = II.getOperand(1);
|
|
auto FMul = II.getOperand(2);
|
|
Value *B, *C;
|
|
if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>(
|
|
m_Specific(P), m_Value(B), m_Value(C))))
|
|
return std::nullopt;
|
|
|
|
if (!FMul->hasOneUse())
|
|
return std::nullopt;
|
|
|
|
llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
|
|
// Stop the combine when the flags on the inputs differ in case dropping flags
|
|
// would lead to us missing out on more beneficial optimizations.
|
|
if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags())
|
|
return std::nullopt;
|
|
if (!FAddFlags.allowContract())
|
|
return std::nullopt;
|
|
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla,
|
|
{II.getType()}, {P, A, B, C}, &II);
|
|
FMLA->setFastMathFlags(FAddFlags);
|
|
return IC.replaceInstUsesWith(II, FMLA);
|
|
}
|
|
|
|
static bool isAllActivePredicate(Value *Pred) {
|
|
// Look through convert.from.svbool(convert.to.svbool(...) chain.
|
|
Value *UncastedPred;
|
|
if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
|
|
m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
|
|
m_Value(UncastedPred)))))
|
|
// If the predicate has the same or less lanes than the uncasted
|
|
// predicate then we know the casting has no effect.
|
|
if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
|
|
cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
|
|
Pred = UncastedPred;
|
|
|
|
return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
|
|
m_ConstantInt<AArch64SVEPredPattern::all>()));
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
Value *Pred = II.getOperand(0);
|
|
Value *PtrOp = II.getOperand(1);
|
|
Type *VecTy = II.getType();
|
|
Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());
|
|
|
|
if (isAllActivePredicate(Pred)) {
|
|
LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr);
|
|
Load->copyMetadata(II);
|
|
return IC.replaceInstUsesWith(II, Load);
|
|
}
|
|
|
|
CallInst *MaskedLoad =
|
|
Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
|
|
Pred, ConstantAggregateZero::get(VecTy));
|
|
MaskedLoad->copyMetadata(II);
|
|
return IC.replaceInstUsesWith(II, MaskedLoad);
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
Value *VecOp = II.getOperand(0);
|
|
Value *Pred = II.getOperand(1);
|
|
Value *PtrOp = II.getOperand(2);
|
|
Value *VecPtr =
|
|
Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());
|
|
|
|
if (isAllActivePredicate(Pred)) {
|
|
StoreInst *Store = Builder.CreateStore(VecOp, VecPtr);
|
|
Store->copyMetadata(II);
|
|
return IC.eraseInstFromFunction(II);
|
|
}
|
|
|
|
CallInst *MaskedStore = Builder.CreateMaskedStore(
|
|
VecOp, VecPtr, PtrOp->getPointerAlignment(DL), Pred);
|
|
MaskedStore->copyMetadata(II);
|
|
return IC.eraseInstFromFunction(II);
|
|
}
|
|
|
|
static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::aarch64_sve_fmul:
|
|
return Instruction::BinaryOps::FMul;
|
|
case Intrinsic::aarch64_sve_fadd:
|
|
return Instruction::BinaryOps::FAdd;
|
|
case Intrinsic::aarch64_sve_fsub:
|
|
return Instruction::BinaryOps::FSub;
|
|
default:
|
|
return Instruction::BinaryOpsEnd;
|
|
}
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
|
|
auto *OpPredicate = II.getOperand(0);
|
|
auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
|
|
if (BinOpCode == Instruction::BinaryOpsEnd ||
|
|
!match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
|
|
m_ConstantInt<AArch64SVEPredPattern::all>())))
|
|
return std::nullopt;
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
Builder.setFastMathFlags(II.getFastMathFlags());
|
|
auto BinOp =
|
|
Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
|
|
return IC.replaceInstUsesWith(II, BinOp);
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineSVEVectorFAdd(InstCombiner &IC, IntrinsicInst &II) {
|
|
if (auto FMLA = instCombineSVEVectorFMLA(IC, II))
|
|
return FMLA;
|
|
return instCombineSVEVectorBinOp(IC, II);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
auto *OpPredicate = II.getOperand(0);
|
|
auto *OpMultiplicand = II.getOperand(1);
|
|
auto *OpMultiplier = II.getOperand(2);
|
|
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
// Return true if a given instruction is a unit splat value, false otherwise.
|
|
auto IsUnitSplat = [](auto *I) {
|
|
auto *SplatValue = getSplatValue(I);
|
|
if (!SplatValue)
|
|
return false;
|
|
return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
|
|
};
|
|
|
|
// Return true if a given instruction is an aarch64_sve_dup intrinsic call
|
|
// with a unit splat value, false otherwise.
|
|
auto IsUnitDup = [](auto *I) {
|
|
auto *IntrI = dyn_cast<IntrinsicInst>(I);
|
|
if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
|
|
return false;
|
|
|
|
auto *SplatValue = IntrI->getOperand(2);
|
|
return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
|
|
};
|
|
|
|
if (IsUnitSplat(OpMultiplier)) {
|
|
// [f]mul pg %n, (dupx 1) => %n
|
|
OpMultiplicand->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, OpMultiplicand);
|
|
} else if (IsUnitDup(OpMultiplier)) {
|
|
// [f]mul pg %n, (dup pg 1) => %n
|
|
auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
|
|
auto *DupPg = DupInst->getOperand(1);
|
|
// TODO: this is naive. The optimization is still valid if DupPg
|
|
// 'encompasses' OpPredicate, not only if they're the same predicate.
|
|
if (OpPredicate == DupPg) {
|
|
OpMultiplicand->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, OpMultiplicand);
|
|
}
|
|
}
|
|
|
|
return instCombineSVEVectorBinOp(IC, II);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
Value *UnpackArg = II.getArgOperand(0);
|
|
auto *RetTy = cast<ScalableVectorType>(II.getType());
|
|
bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
|
|
II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
|
|
|
|
// Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
|
|
// Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
|
|
if (auto *ScalarArg = getSplatValue(UnpackArg)) {
|
|
ScalarArg =
|
|
Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
|
|
Value *NewVal =
|
|
Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
|
|
NewVal->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, NewVal);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
auto *OpVal = II.getOperand(0);
|
|
auto *OpIndices = II.getOperand(1);
|
|
VectorType *VTy = cast<VectorType>(II.getType());
|
|
|
|
// Check whether OpIndices is a constant splat value < minimal element count
|
|
// of result.
|
|
auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
|
|
if (!SplatValue ||
|
|
SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
|
|
return std::nullopt;
|
|
|
|
// Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
|
|
// splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
|
|
auto *VectorSplat =
|
|
Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
|
|
|
|
VectorSplat->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, VectorSplat);
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
// zip1(uzp1(A, B), uzp2(A, B)) --> A
|
|
// zip2(uzp1(A, B), uzp2(A, B)) --> B
|
|
Value *A, *B;
|
|
if (match(II.getArgOperand(0),
|
|
m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
|
|
match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
|
|
m_Specific(A), m_Specific(B))))
|
|
return IC.replaceInstUsesWith(
|
|
II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
|
|
Value *Mask = II.getOperand(0);
|
|
Value *BasePtr = II.getOperand(1);
|
|
Value *Index = II.getOperand(2);
|
|
Type *Ty = II.getType();
|
|
Value *PassThru = ConstantAggregateZero::get(Ty);
|
|
|
|
// Contiguous gather => masked load.
|
|
// (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
|
|
// => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
|
|
Value *IndexBase;
|
|
if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
|
|
m_Value(IndexBase), m_SpecificInt(1)))) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
Align Alignment =
|
|
BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
|
|
|
|
Type *VecPtrTy = PointerType::getUnqual(Ty);
|
|
Value *Ptr = Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
|
|
BasePtr, IndexBase);
|
|
Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
|
|
CallInst *MaskedLoad =
|
|
Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
|
|
MaskedLoad->takeName(&II);
|
|
return IC.replaceInstUsesWith(II, MaskedLoad);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *>
|
|
instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
|
|
Value *Val = II.getOperand(0);
|
|
Value *Mask = II.getOperand(1);
|
|
Value *BasePtr = II.getOperand(2);
|
|
Value *Index = II.getOperand(3);
|
|
Type *Ty = Val->getType();
|
|
|
|
// Contiguous scatter => masked store.
|
|
// (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
|
|
// => (masked.store Value (gep BasePtr IndexBase) Align Mask)
|
|
Value *IndexBase;
|
|
if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
|
|
m_Value(IndexBase), m_SpecificInt(1)))) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
|
|
Align Alignment =
|
|
BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
|
|
|
|
Value *Ptr = Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
|
|
BasePtr, IndexBase);
|
|
Type *VecPtrTy = PointerType::getUnqual(Ty);
|
|
Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
|
|
|
|
(void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
|
|
|
|
return IC.eraseInstFromFunction(II);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
IRBuilder<> Builder(II.getContext());
|
|
Builder.SetInsertPoint(&II);
|
|
Type *Int32Ty = Builder.getInt32Ty();
|
|
Value *Pred = II.getOperand(0);
|
|
Value *Vec = II.getOperand(1);
|
|
Value *DivVec = II.getOperand(2);
|
|
|
|
Value *SplatValue = getSplatValue(DivVec);
|
|
ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
|
|
if (!SplatConstantInt)
|
|
return std::nullopt;
|
|
APInt Divisor = SplatConstantInt->getValue();
|
|
|
|
if (Divisor.isPowerOf2()) {
|
|
Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
|
|
auto ASRD = Builder.CreateIntrinsic(
|
|
Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
|
|
return IC.replaceInstUsesWith(II, ASRD);
|
|
}
|
|
if (Divisor.isNegatedPowerOf2()) {
|
|
Divisor.negate();
|
|
Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
|
|
auto ASRD = Builder.CreateIntrinsic(
|
|
Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
|
|
auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg,
|
|
{ASRD->getType()}, {ASRD, Pred, ASRD});
|
|
return IC.replaceInstUsesWith(II, NEG);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
Value *A = II.getArgOperand(0);
|
|
Value *B = II.getArgOperand(1);
|
|
if (A == B)
|
|
return IC.replaceInstUsesWith(II, A);
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
IRBuilder<> Builder(&II);
|
|
Value *Pred = II.getOperand(0);
|
|
Value *Vec = II.getOperand(1);
|
|
Value *Shift = II.getOperand(2);
|
|
|
|
// Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
|
|
Value *AbsPred, *MergedValue;
|
|
if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
|
|
m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
|
|
!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
|
|
m_Value(MergedValue), m_Value(AbsPred), m_Value())))
|
|
|
|
return std::nullopt;
|
|
|
|
// Transform is valid if any of the following are true:
|
|
// * The ABS merge value is an undef or non-negative
|
|
// * The ABS predicate is all active
|
|
// * The ABS predicate and the SRSHL predicates are the same
|
|
if (!isa<UndefValue>(MergedValue) && !match(MergedValue, m_NonNegative()) &&
|
|
AbsPred != Pred && !isAllActivePredicate(AbsPred))
|
|
return std::nullopt;
|
|
|
|
// Only valid when the shift amount is non-negative, otherwise the rounding
|
|
// behaviour of SRSHL cannot be ignored.
|
|
if (!match(Shift, m_NonNegative()))
|
|
return std::nullopt;
|
|
|
|
auto LSL = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl, {II.getType()},
|
|
{Pred, Vec, Shift});
|
|
|
|
return IC.replaceInstUsesWith(II, LSL);
|
|
}
|
|
|
|
std::optional<Instruction *>
|
|
AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
|
|
IntrinsicInst &II) const {
|
|
Intrinsic::ID IID = II.getIntrinsicID();
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_fmaxnm:
|
|
case Intrinsic::aarch64_neon_fminnm:
|
|
return instCombineMaxMinNM(IC, II);
|
|
case Intrinsic::aarch64_sve_convert_from_svbool:
|
|
return instCombineConvertFromSVBool(IC, II);
|
|
case Intrinsic::aarch64_sve_dup:
|
|
return instCombineSVEDup(IC, II);
|
|
case Intrinsic::aarch64_sve_dup_x:
|
|
return instCombineSVEDupX(IC, II);
|
|
case Intrinsic::aarch64_sve_cmpne:
|
|
case Intrinsic::aarch64_sve_cmpne_wide:
|
|
return instCombineSVECmpNE(IC, II);
|
|
case Intrinsic::aarch64_sve_rdffr:
|
|
return instCombineRDFFR(IC, II);
|
|
case Intrinsic::aarch64_sve_lasta:
|
|
case Intrinsic::aarch64_sve_lastb:
|
|
return instCombineSVELast(IC, II);
|
|
case Intrinsic::aarch64_sve_clasta_n:
|
|
case Intrinsic::aarch64_sve_clastb_n:
|
|
return instCombineSVECondLast(IC, II);
|
|
case Intrinsic::aarch64_sve_cntd:
|
|
return instCombineSVECntElts(IC, II, 2);
|
|
case Intrinsic::aarch64_sve_cntw:
|
|
return instCombineSVECntElts(IC, II, 4);
|
|
case Intrinsic::aarch64_sve_cnth:
|
|
return instCombineSVECntElts(IC, II, 8);
|
|
case Intrinsic::aarch64_sve_cntb:
|
|
return instCombineSVECntElts(IC, II, 16);
|
|
case Intrinsic::aarch64_sve_ptest_any:
|
|
case Intrinsic::aarch64_sve_ptest_first:
|
|
case Intrinsic::aarch64_sve_ptest_last:
|
|
return instCombineSVEPTest(IC, II);
|
|
case Intrinsic::aarch64_sve_mul:
|
|
case Intrinsic::aarch64_sve_fmul:
|
|
return instCombineSVEVectorMul(IC, II);
|
|
case Intrinsic::aarch64_sve_fadd:
|
|
return instCombineSVEVectorFAdd(IC, II);
|
|
case Intrinsic::aarch64_sve_fsub:
|
|
return instCombineSVEVectorBinOp(IC, II);
|
|
case Intrinsic::aarch64_sve_tbl:
|
|
return instCombineSVETBL(IC, II);
|
|
case Intrinsic::aarch64_sve_uunpkhi:
|
|
case Intrinsic::aarch64_sve_uunpklo:
|
|
case Intrinsic::aarch64_sve_sunpkhi:
|
|
case Intrinsic::aarch64_sve_sunpklo:
|
|
return instCombineSVEUnpack(IC, II);
|
|
case Intrinsic::aarch64_sve_zip1:
|
|
case Intrinsic::aarch64_sve_zip2:
|
|
return instCombineSVEZip(IC, II);
|
|
case Intrinsic::aarch64_sve_ld1_gather_index:
|
|
return instCombineLD1GatherIndex(IC, II);
|
|
case Intrinsic::aarch64_sve_st1_scatter_index:
|
|
return instCombineST1ScatterIndex(IC, II);
|
|
case Intrinsic::aarch64_sve_ld1:
|
|
return instCombineSVELD1(IC, II, DL);
|
|
case Intrinsic::aarch64_sve_st1:
|
|
return instCombineSVEST1(IC, II, DL);
|
|
case Intrinsic::aarch64_sve_sdiv:
|
|
return instCombineSVESDIV(IC, II);
|
|
case Intrinsic::aarch64_sve_sel:
|
|
return instCombineSVESel(IC, II);
|
|
case Intrinsic::aarch64_sve_srshl:
|
|
return instCombineSVESrshl(IC, II);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
|
|
APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) const {
|
|
switch (II.getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_fcvtxn:
|
|
case Intrinsic::aarch64_neon_rshrn:
|
|
case Intrinsic::aarch64_neon_sqrshrn:
|
|
case Intrinsic::aarch64_neon_sqrshrun:
|
|
case Intrinsic::aarch64_neon_sqshrn:
|
|
case Intrinsic::aarch64_neon_sqshrun:
|
|
case Intrinsic::aarch64_neon_sqxtn:
|
|
case Intrinsic::aarch64_neon_sqxtun:
|
|
case Intrinsic::aarch64_neon_uqrshrn:
|
|
case Intrinsic::aarch64_neon_uqshrn:
|
|
case Intrinsic::aarch64_neon_uqxtn:
|
|
SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
|
|
break;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
TypeSize
|
|
AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
switch (K) {
|
|
case TargetTransformInfo::RGK_Scalar:
|
|
return TypeSize::getFixed(64);
|
|
case TargetTransformInfo::RGK_FixedWidthVector:
|
|
if (!ST->isStreamingSVEModeDisabled() &&
|
|
!EnableFixedwidthAutovecInStreamingMode)
|
|
return TypeSize::getFixed(0);
|
|
|
|
if (ST->hasSVE())
|
|
return TypeSize::getFixed(
|
|
std::max(ST->getMinSVEVectorSizeInBits(), 128u));
|
|
|
|
return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
|
|
case TargetTransformInfo::RGK_ScalableVector:
|
|
if (!ST->isStreamingSVEModeDisabled() && !EnableScalableAutovecInStreamingMode)
|
|
return TypeSize::getScalable(0);
|
|
|
|
return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
|
|
}
|
|
llvm_unreachable("Unsupported register kind");
|
|
}
|
|
|
|
bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
|
|
ArrayRef<const Value *> Args) {
|
|
|
|
// A helper that returns a vector type from the given type. The number of
|
|
// elements in type Ty determines the vector width.
|
|
auto toVectorTy = [&](Type *ArgTy) {
|
|
return VectorType::get(ArgTy->getScalarType(),
|
|
cast<VectorType>(DstTy)->getElementCount());
|
|
};
|
|
|
|
// Exit early if DstTy is not a vector type whose elements are at least
|
|
// 16-bits wide. SVE doesn't generally have the same set of instructions to
|
|
// perform an extend with the add/sub/mul. There are SMULLB style
|
|
// instructions, but they operate on top/bottom, requiring some sort of lane
|
|
// interleaving to be used with zext/sext.
|
|
if (!useNeonVector(DstTy) || DstTy->getScalarSizeInBits() < 16)
|
|
return false;
|
|
|
|
// Determine if the operation has a widening variant. We consider both the
|
|
// "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
|
|
// instructions.
|
|
//
|
|
// TODO: Add additional widening operations (e.g., shl, etc.) once we
|
|
// verify that their extending operands are eliminated during code
|
|
// generation.
|
|
switch (Opcode) {
|
|
case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
|
|
case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
|
|
case Instruction::Mul: // SMULL(2), UMULL(2)
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// To be a widening instruction (either the "wide" or "long" versions), the
|
|
// second operand must be a sign- or zero extend.
|
|
if (Args.size() != 2 ||
|
|
(!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])))
|
|
return false;
|
|
auto *Extend = cast<CastInst>(Args[1]);
|
|
auto *Arg0 = dyn_cast<CastInst>(Args[0]);
|
|
|
|
// A mul only has a mull version (not like addw). Both operands need to be
|
|
// extending and the same type.
|
|
if (Opcode == Instruction::Mul &&
|
|
(!Arg0 || Arg0->getOpcode() != Extend->getOpcode() ||
|
|
Arg0->getOperand(0)->getType() != Extend->getOperand(0)->getType()))
|
|
return false;
|
|
|
|
// Legalize the destination type and ensure it can be used in a widening
|
|
// operation.
|
|
auto DstTyL = getTypeLegalizationCost(DstTy);
|
|
unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
|
|
if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
|
|
return false;
|
|
|
|
// Legalize the source type and ensure it can be used in a widening
|
|
// operation.
|
|
auto *SrcTy = toVectorTy(Extend->getSrcTy());
|
|
auto SrcTyL = getTypeLegalizationCost(SrcTy);
|
|
unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
|
|
if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
|
|
return false;
|
|
|
|
// Get the total number of vector elements in the legalized types.
|
|
InstructionCost NumDstEls =
|
|
DstTyL.first * DstTyL.second.getVectorMinNumElements();
|
|
InstructionCost NumSrcEls =
|
|
SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
|
|
|
|
// Return true if the legalized types have the same number of vector elements
|
|
// and the destination element type size is twice that of the source type.
|
|
return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// If the cast is observable, and it is used by a widening instruction (e.g.,
|
|
// uaddl, saddw, etc.), it may be free.
|
|
if (I && I->hasOneUser()) {
|
|
auto *SingleUser = cast<Instruction>(*I->user_begin());
|
|
SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
|
|
if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
|
|
// If the cast is the second operand, it is free. We will generate either
|
|
// a "wide" or "long" version of the widening instruction.
|
|
if (I == SingleUser->getOperand(1))
|
|
return 0;
|
|
// If the cast is not the second operand, it will be free if it looks the
|
|
// same as the second operand. In this case, we will generate a "long"
|
|
// version of the widening instruction.
|
|
if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
|
|
if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
|
|
cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// TODO: Allow non-throughput costs that aren't binary.
|
|
auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost == 0 ? 0 : 1;
|
|
return Cost;
|
|
};
|
|
|
|
EVT SrcTy = TLI->getValueType(DL, Src);
|
|
EVT DstTy = TLI->getValueType(DL, Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return AdjustCost(
|
|
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
|
|
|
|
static const TypeConversionCostTblEntry
|
|
ConversionTbl[] = {
|
|
{ ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1}, // xtn
|
|
{ ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1}, // xtn
|
|
{ ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1}, // xtn
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1}, // xtn
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 3}, // 2 xtn + 1 uzp1
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1}, // xtn
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2}, // 1 uzp1 + 1 xtn
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1}, // 1 uzp1
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1}, // 1 xtn
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2}, // 1 uzp1 + 1 xtn
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 4}, // 3 x uzp1 + xtn
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1}, // 1 uzp1
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 3}, // 3 x uzp1
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 2}, // 2 x uzp1
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 1}, // uzp1
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 3}, // (2 + 1) x uzp1
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 7}, // (4 + 2 + 1) x uzp1
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2}, // 2 x uzp1
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6}, // (4 + 2) x uzp1
|
|
{ ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4}, // 4 x uzp1
|
|
|
|
// Truncations on nxvmiN
|
|
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
|
|
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
|
|
{ ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
|
|
{ ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
|
|
|
|
// The number of shll instructions for the extension.
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
|
|
// LowerVectorINT_TO_FP:
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
|
|
// Complex: to v2f32
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
|
|
|
|
// Complex: to v4f32
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
|
|
// Complex: to v8f32
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
|
|
// Complex: to v16f32
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
|
|
|
|
// Complex: to v2f64
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
// Complex: to v4f64
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
|
|
|
|
// LowerVectorFP_TO_INT
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
|
|
// Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
|
|
|
|
// Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
|
|
|
|
// Complex, from nxv2f32.
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
|
|
|
|
// Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
|
|
|
|
// Complex, from nxv2f64.
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
|
|
|
|
// Complex, from nxv4f32.
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
|
|
|
|
// Complex, from nxv8f64. Illegal -> illegal conversions not required.
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
|
|
|
|
// Complex, from nxv4f64. Illegal -> illegal conversions not required.
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
|
|
|
|
// Complex, from nxv8f32. Illegal -> illegal conversions not required.
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
|
|
|
|
// Complex, from nxv8f16.
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
|
|
|
|
// Complex, from nxv4f16.
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
|
|
|
|
// Complex, from nxv2f16.
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
|
|
|
|
// Truncate from nxvmf32 to nxvmf16.
|
|
{ ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
|
|
{ ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
|
|
{ ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
|
|
|
|
// Truncate from nxvmf64 to nxvmf16.
|
|
{ ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
|
|
|
|
// Truncate from nxvmf64 to nxvmf32.
|
|
{ ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
|
|
{ ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
|
|
{ ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
|
|
|
|
// Extend from nxvmf16 to nxvmf32.
|
|
{ ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
|
|
{ ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
|
|
{ ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
|
|
|
|
// Extend from nxvmf16 to nxvmf64.
|
|
{ ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
|
|
{ ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
|
|
{ ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
|
|
|
|
// Extend from nxvmf32 to nxvmf64.
|
|
{ ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
|
|
{ ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
|
|
{ ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
|
|
|
|
// Bitcasts from float to integer
|
|
{ ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
|
|
{ ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
|
|
{ ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
|
|
|
|
// Bitcasts from integer to float
|
|
{ ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
|
|
{ ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
|
|
{ ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
|
|
};
|
|
|
|
if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
|
|
DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
static const TypeConversionCostTblEntry FP16Tbl[] = {
|
|
{ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
|
|
{ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
|
|
{ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
|
|
{ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
|
|
{ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
|
|
{ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
|
|
{ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
|
|
{ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
|
|
{ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
|
|
{ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
|
|
{ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
|
|
{ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
|
|
{ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // ushll + ucvtf
|
|
{ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // sshll + scvtf
|
|
{ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
|
|
{ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
|
|
};
|
|
|
|
if (ST->hasFullFP16())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
return AdjustCost(
|
|
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
|
|
Type *Dst,
|
|
VectorType *VecTy,
|
|
unsigned Index) {
|
|
|
|
// Make sure we were given a valid extend opcode.
|
|
assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
|
|
"Invalid opcode");
|
|
|
|
// We are extending an element we extract from a vector, so the source type
|
|
// of the extend is the element type of the vector.
|
|
auto *Src = VecTy->getElementType();
|
|
|
|
// Sign- and zero-extends are for integer types only.
|
|
assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
|
|
|
|
// Get the cost for the extract. We compute the cost (if any) for the extend
|
|
// below.
|
|
InstructionCost Cost =
|
|
getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
|
|
|
|
// Legalize the types.
|
|
auto VecLT = getTypeLegalizationCost(VecTy);
|
|
auto DstVT = TLI->getValueType(DL, Dst);
|
|
auto SrcVT = TLI->getValueType(DL, Src);
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
// If the resulting type is still a vector and the destination type is legal,
|
|
// we may get the extension for free. If not, get the default cost for the
|
|
// extend.
|
|
if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
|
|
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
|
|
CostKind);
|
|
|
|
// The destination type should be larger than the element type. If not, get
|
|
// the default cost for the extend.
|
|
if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
|
|
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
|
|
CostKind);
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Opcode should be either SExt or ZExt");
|
|
|
|
// For sign-extends, we only need a smov, which performs the extension
|
|
// automatically.
|
|
case Instruction::SExt:
|
|
return Cost;
|
|
|
|
// For zero-extends, the extend is performed automatically by a umov unless
|
|
// the destination type is i64 and the element type is i8 or i16.
|
|
case Instruction::ZExt:
|
|
if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
|
|
return Cost;
|
|
}
|
|
|
|
// If we are unable to perform the extend for free, get the default cost.
|
|
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
|
|
CostKind);
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Opcode == Instruction::PHI ? 0 : 1;
|
|
assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(Type *Val,
|
|
unsigned Index,
|
|
bool HasRealUse) {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Index != -1U) {
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. For fixed-width vectors we can normalize the
|
|
// index to the new type.
|
|
if (LT.second.isFixedLengthVector()) {
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
}
|
|
|
|
// The element at index zero is already inside the vector.
|
|
// - For a physical (HasRealUse==true) insert-element or extract-element
|
|
// instruction that extracts integers, an explicit FPR -> GPR move is
|
|
// needed. So it has non-zero cost.
|
|
// - For the rest of cases (virtual instruction or element type is float),
|
|
// consider the instruction free.
|
|
//
|
|
// FIXME:
|
|
// If the extract-element and insert-element instructions could be
|
|
// simplified away (e.g., could be combined into users by looking at use-def
|
|
// context), they have no cost. This is not done in the first place for
|
|
// compile-time considerations.
|
|
if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
|
|
return 0;
|
|
}
|
|
|
|
// All other insert/extracts cost this much.
|
|
return ST->getVectorInsertExtractBaseCost();
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) {
|
|
return getVectorInstrCostHelper(Val, Index, false /* HasRealUse */);
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
|
|
Type *Val, unsigned Index) {
|
|
return getVectorInstrCostHelper(Val, Index, true /* HasRealUse */);
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
|
|
// TODO: Handle more cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
|
|
Op2Info, Args, CxtI);
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
switch (ISD) {
|
|
default:
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
|
|
Op2Info);
|
|
case ISD::SDIV:
|
|
if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
|
|
// On AArch64, scalar signed division by constants power-of-two are
|
|
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
|
|
// The OperandValue properties many not be same as that of previous
|
|
// operation; conservatively assume OP_None.
|
|
InstructionCost Cost = getArithmeticInstrCost(
|
|
Instruction::Add, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
Cost += getArithmeticInstrCost(
|
|
Instruction::Select, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
return Cost;
|
|
}
|
|
[[fallthrough]];
|
|
case ISD::UDIV: {
|
|
if (Op2Info.isConstant() && Op2Info.isUniform()) {
|
|
auto VT = TLI->getValueType(DL, Ty);
|
|
if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
|
|
// Vector signed division by constant are expanded to the
|
|
// sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
|
|
// to MULHS + SUB + SRL + ADD + SRL.
|
|
InstructionCost MulCost = getArithmeticInstrCost(
|
|
Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
InstructionCost AddCost = getArithmeticInstrCost(
|
|
Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
InstructionCost ShrCost = getArithmeticInstrCost(
|
|
Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
|
|
}
|
|
}
|
|
|
|
InstructionCost Cost = BaseT::getArithmeticInstrCost(
|
|
Opcode, Ty, CostKind, Op1Info, Op2Info);
|
|
if (Ty->isVectorTy()) {
|
|
if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) {
|
|
// SDIV/UDIV operations are lowered using SVE, then we can have less
|
|
// costs.
|
|
if (isa<FixedVectorType>(Ty) &&
|
|
cast<FixedVectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() <
|
|
128) {
|
|
EVT VT = TLI->getValueType(DL, Ty);
|
|
static const CostTblEntry DivTbl[]{
|
|
{ISD::SDIV, MVT::v2i8, 5}, {ISD::SDIV, MVT::v4i8, 8},
|
|
{ISD::SDIV, MVT::v8i8, 8}, {ISD::SDIV, MVT::v2i16, 5},
|
|
{ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
|
|
{ISD::UDIV, MVT::v2i8, 5}, {ISD::UDIV, MVT::v4i8, 8},
|
|
{ISD::UDIV, MVT::v8i8, 8}, {ISD::UDIV, MVT::v2i16, 5},
|
|
{ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};
|
|
|
|
const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
|
|
if (nullptr != Entry)
|
|
return Entry->Cost;
|
|
}
|
|
// For 8/16-bit elements, the cost is higher because the type
|
|
// requires promotion and possibly splitting:
|
|
if (LT.second.getScalarType() == MVT::i8)
|
|
Cost *= 8;
|
|
else if (LT.second.getScalarType() == MVT::i16)
|
|
Cost *= 4;
|
|
return Cost;
|
|
} else {
|
|
// If one of the operands is a uniform constant then the cost for each
|
|
// element is Cost for insertion, extraction and division.
|
|
// Insertion cost = 2, Extraction Cost = 2, Division = cost for the
|
|
// operation with scalar type
|
|
if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
|
|
(Op2Info.isConstant() && Op2Info.isUniform())) {
|
|
if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
|
|
InstructionCost DivCost = BaseT::getArithmeticInstrCost(
|
|
Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info);
|
|
return (4 + DivCost) * VTy->getNumElements();
|
|
}
|
|
}
|
|
// On AArch64, without SVE, vector divisions are expanded
|
|
// into scalar divisions of each pair of elements.
|
|
Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty,
|
|
CostKind, Op1Info, Op2Info);
|
|
Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
|
|
Op1Info, Op2Info);
|
|
}
|
|
|
|
// TODO: if one of the arguments is scalar, then it's not necessary to
|
|
// double the cost of handling the vector elements.
|
|
Cost += Cost;
|
|
}
|
|
return Cost;
|
|
}
|
|
case ISD::MUL:
|
|
// When SVE is available, then we can lower the v2i64 operation using
|
|
// the SVE mul instruction, which has a lower cost.
|
|
if (LT.second == MVT::v2i64 && ST->hasSVE())
|
|
return LT.first;
|
|
|
|
// When SVE is not available, there is no MUL.2d instruction,
|
|
// which means mul <2 x i64> is expensive as elements are extracted
|
|
// from the vectors and the muls scalarized.
|
|
// As getScalarizationOverhead is a bit too pessimistic, we
|
|
// estimate the cost for a i64 vector directly here, which is:
|
|
// - four 2-cost i64 extracts,
|
|
// - two 2-cost i64 inserts, and
|
|
// - two 1-cost muls.
|
|
// So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
|
|
// LT.first = 2 the cost is 28. If both operands are extensions it will not
|
|
// need to scalarize so the cost can be cheaper (smull or umull).
|
|
// so the cost can be cheaper (smull or umull).
|
|
if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
|
|
return LT.first;
|
|
return LT.first * 14;
|
|
case ISD::ADD:
|
|
case ISD::XOR:
|
|
case ISD::OR:
|
|
case ISD::AND:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
case ISD::SHL:
|
|
// These nodes are marked as 'custom' for combining purposes only.
|
|
// We know that they are legal. See LowerAdd in ISelLowering.
|
|
return LT.first;
|
|
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FNEG:
|
|
// These nodes are marked as 'custom' just to lower them to SVE.
|
|
// We know said lowering will incur no additional cost.
|
|
if (!Ty->getScalarType()->isFP128Ty())
|
|
return 2 * LT.first;
|
|
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
|
|
Op2Info);
|
|
}
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
|
|
ScalarEvolution *SE,
|
|
const SCEV *Ptr) {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
int MaxMergeDistance = 64;
|
|
|
|
if (Ty->isVectorTy() && SE &&
|
|
!BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
I);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// We don't lower some vector selects well that are wider than the register
|
|
// width.
|
|
if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
|
|
// We would need this many instructions to hide the scalarization happening.
|
|
const int AmortizationCost = 20;
|
|
|
|
// If VecPred is not set, check if we can get a predicate from the context
|
|
// instruction, if its type matches the requested ValTy.
|
|
if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
|
|
CmpInst::Predicate CurrentPred;
|
|
if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
|
|
m_Value())))
|
|
VecPred = CurrentPred;
|
|
}
|
|
// Check if we have a compare/select chain that can be lowered using
|
|
// a (F)CMxx & BFI pair.
|
|
if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
|
|
VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
|
|
VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
|
|
VecPred == CmpInst::FCMP_UNE) {
|
|
static const auto ValidMinMaxTys = {
|
|
MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
|
|
MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
|
|
static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
|
|
|
|
auto LT = getTypeLegalizationCost(ValTy);
|
|
if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }) ||
|
|
(ST->hasFullFP16() &&
|
|
any_of(ValidFP16MinMaxTys, [<](MVT M) { return M == LT.second; })))
|
|
return LT.first;
|
|
}
|
|
|
|
static const TypeConversionCostTblEntry
|
|
VectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(DL, CondTy);
|
|
EVT SelValTy = TLI->getValueType(DL, ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
|
|
SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
}
|
|
// The base case handles scalable vectors fine for now, since it treats the
|
|
// cost as 1 * legalization cost.
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
|
|
}
|
|
|
|
AArch64TTIImpl::TTI::MemCmpExpansionOptions
|
|
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
|
|
TTI::MemCmpExpansionOptions Options;
|
|
if (ST->requiresStrictAlign()) {
|
|
// TODO: Add cost modeling for strict align. Misaligned loads expand to
|
|
// a bunch of instructions when strict align is enabled.
|
|
return Options;
|
|
}
|
|
Options.AllowOverlappingLoads = true;
|
|
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
|
|
Options.NumLoadsPerBlock = Options.MaxNumLoads;
|
|
// TODO: Though vector loads usually perform well on AArch64, in some targets
|
|
// they may wake up the FP unit, which raises the power consumption. Perhaps
|
|
// they could be used with no holds barred (-O3).
|
|
Options.LoadSizes = {8, 4, 2, 1};
|
|
return Options;
|
|
}
|
|
|
|
bool AArch64TTIImpl::prefersVectorizedAddressing() const {
|
|
return ST->hasSVE();
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
|
|
Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (useNeonVector(Src))
|
|
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
auto LT = getTypeLegalizationCost(Src);
|
|
if (!LT.first.isValid())
|
|
return InstructionCost::getInvalid();
|
|
|
|
// The code-generator is currently not able to handle scalable vectors
|
|
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
|
|
// it. This change will be removed when code-generation for these types is
|
|
// sufficiently reliable.
|
|
if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
|
|
return InstructionCost::getInvalid();
|
|
|
|
return LT.first * 2;
|
|
}
|
|
|
|
static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
|
|
return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
|
|
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
|
|
if (useNeonVector(DataTy))
|
|
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
auto *VT = cast<VectorType>(DataTy);
|
|
auto LT = getTypeLegalizationCost(DataTy);
|
|
if (!LT.first.isValid())
|
|
return InstructionCost::getInvalid();
|
|
|
|
// The code-generator is currently not able to handle scalable vectors
|
|
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
|
|
// it. This change will be removed when code-generation for these types is
|
|
// sufficiently reliable.
|
|
if (cast<VectorType>(DataTy)->getElementCount() ==
|
|
ElementCount::getScalable(1))
|
|
return InstructionCost::getInvalid();
|
|
|
|
ElementCount LegalVF = LT.second.getVectorElementCount();
|
|
InstructionCost MemOpCost =
|
|
getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind,
|
|
{TTI::OK_AnyValue, TTI::OP_None}, I);
|
|
// Add on an overhead cost for using gathers/scatters.
|
|
// TODO: At the moment this is applied unilaterally for all CPUs, but at some
|
|
// point we may want a per-CPU overhead.
|
|
MemOpCost *= getSVEGatherScatterOverhead(Opcode);
|
|
return LT.first * MemOpCost * getMaxNumElements(LegalVF);
|
|
}
|
|
|
|
bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
|
|
return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
|
|
MaybeAlign Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpInfo,
|
|
const Instruction *I) {
|
|
EVT VT = TLI->getValueType(DL, Ty, true);
|
|
// Type legalization can't handle structs
|
|
if (VT == MVT::Other)
|
|
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
|
|
CostKind);
|
|
|
|
auto LT = getTypeLegalizationCost(Ty);
|
|
if (!LT.first.isValid())
|
|
return InstructionCost::getInvalid();
|
|
|
|
// The code-generator is currently not able to handle scalable vectors
|
|
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
|
|
// it. This change will be removed when code-generation for these types is
|
|
// sufficiently reliable.
|
|
if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
|
|
if (VTy->getElementCount() == ElementCount::getScalable(1))
|
|
return InstructionCost::getInvalid();
|
|
|
|
// TODO: consider latency as well for TCK_SizeAndLatency.
|
|
if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
|
|
return LT.first;
|
|
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return 1;
|
|
|
|
if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
|
|
LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
|
|
// Unaligned stores are extremely inefficient. We don't split all
|
|
// unaligned 128-bit stores because the negative impact that has shown in
|
|
// practice on inlined block copy code.
|
|
// We make such stores expensive so that we will only vectorize if there
|
|
// are 6 other instructions getting vectorized.
|
|
const int AmortizationCost = 6;
|
|
|
|
return LT.first * 2 * AmortizationCost;
|
|
}
|
|
|
|
// Check truncating stores and extending loads.
|
|
if (useNeonVector(Ty) &&
|
|
Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
|
|
// v4i8 types are lowered to scalar a load/store and sshll/xtn.
|
|
if (VT == MVT::v4i8)
|
|
return 2;
|
|
// Otherwise we need to scalarize.
|
|
return cast<FixedVectorType>(Ty)->getNumElements() * 2;
|
|
}
|
|
|
|
return LT.first;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) {
|
|
assert(Factor >= 2 && "Invalid interleave factor");
|
|
auto *VecVTy = cast<FixedVectorType>(VecTy);
|
|
|
|
if (!UseMaskForCond && !UseMaskForGaps &&
|
|
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
|
|
unsigned NumElts = VecVTy->getNumElements();
|
|
auto *SubVecTy =
|
|
FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
|
|
|
|
// ldN/stN only support legal vector types of size 64 or 128 in bits.
|
|
// Accesses having vector types that are a multiple of 128 bits can be
|
|
// matched to more than one ldN/stN instruction.
|
|
bool UseScalable;
|
|
if (NumElts % Factor == 0 &&
|
|
TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
|
|
return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
|
|
}
|
|
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
|
|
InstructionCost Cost = 0;
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
for (auto *I : Tys) {
|
|
if (!I->isVectorTy())
|
|
continue;
|
|
if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
|
|
128)
|
|
Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
return ST->getMaxInterleaveFactor();
|
|
}
|
|
|
|
// For Falkor, we want to avoid having too many strided loads in a loop since
|
|
// that can exhaust the HW prefetcher resources. We adjust the unroller
|
|
// MaxCount preference below to attempt to ensure unrolling doesn't create too
|
|
// many strided loads.
|
|
static void
|
|
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TargetTransformInfo::UnrollingPreferences &UP) {
|
|
enum { MaxStridedLoads = 7 };
|
|
auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
|
|
int StridedLoads = 0;
|
|
// FIXME? We could make this more precise by looking at the CFG and
|
|
// e.g. not counting loads in each side of an if-then-else diamond.
|
|
for (const auto BB : L->blocks()) {
|
|
for (auto &I : *BB) {
|
|
LoadInst *LMemI = dyn_cast<LoadInst>(&I);
|
|
if (!LMemI)
|
|
continue;
|
|
|
|
Value *PtrValue = LMemI->getPointerOperand();
|
|
if (L->isLoopInvariant(PtrValue))
|
|
continue;
|
|
|
|
const SCEV *LSCEV = SE.getSCEV(PtrValue);
|
|
const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
|
|
if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
|
|
continue;
|
|
|
|
// FIXME? We could take pairing of unrolled load copies into account
|
|
// by looking at the AddRec, but we would probably have to limit this
|
|
// to loops with no stores or other memory optimization barriers.
|
|
++StridedLoads;
|
|
// We've seen enough strided loads that seeing more won't make a
|
|
// difference.
|
|
if (StridedLoads > MaxStridedLoads / 2)
|
|
return StridedLoads;
|
|
}
|
|
}
|
|
return StridedLoads;
|
|
};
|
|
|
|
int StridedLoads = countStridedLoads(L, SE);
|
|
LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
|
|
<< " strided loads\n");
|
|
// Pick the largest power of 2 unroll count that won't result in too many
|
|
// strided loads.
|
|
if (StridedLoads) {
|
|
UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
|
|
LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
|
|
<< UP.MaxCount << '\n');
|
|
}
|
|
}
|
|
|
|
void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
// Enable partial unrolling and runtime unrolling.
|
|
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
|
|
|
|
UP.UpperBound = true;
|
|
|
|
// For inner loop, it is more likely to be a hot one, and the runtime check
|
|
// can be promoted out from LICM pass, so the overhead is less, let's try
|
|
// a larger threshold to unroll more loops.
|
|
if (L->getLoopDepth() > 1)
|
|
UP.PartialThreshold *= 2;
|
|
|
|
// Disable partial & runtime unrolling on -Os.
|
|
UP.PartialOptSizeThreshold = 0;
|
|
|
|
if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
|
|
EnableFalkorHWPFUnrollFix)
|
|
getFalkorUnrollingPreferences(L, SE, UP);
|
|
|
|
// Scan the loop: don't unroll loops with calls as this could prevent
|
|
// inlining. Don't unroll vector loops either, as they don't benefit much from
|
|
// unrolling.
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
// Don't unroll vectorised loop.
|
|
if (I.getType()->isVectorTy())
|
|
return;
|
|
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
|
|
if (!isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Enable runtime unrolling for in-order models
|
|
// If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
|
|
// checking for that case, we can ensure that the default behaviour is
|
|
// unchanged
|
|
if (ST->getProcFamily() != AArch64Subtarget::Others &&
|
|
!ST->getSchedModel().isOutOfOrder()) {
|
|
UP.Runtime = true;
|
|
UP.Partial = true;
|
|
UP.UnrollRemainder = true;
|
|
UP.DefaultUnrollRuntimeCount = 4;
|
|
|
|
UP.UnrollAndJam = true;
|
|
UP.UnrollAndJamInnerLoopThreshold = 60;
|
|
}
|
|
}
|
|
|
|
void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
}
|
|
|
|
Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType) {
|
|
switch (Inst->getIntrinsicID()) {
|
|
default:
|
|
return nullptr;
|
|
case Intrinsic::aarch64_neon_st2:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
case Intrinsic::aarch64_neon_st4: {
|
|
// Create a struct type
|
|
StructType *ST = dyn_cast<StructType>(ExpectedType);
|
|
if (!ST)
|
|
return nullptr;
|
|
unsigned NumElts = Inst->arg_size() - 1;
|
|
if (ST->getNumElements() != NumElts)
|
|
return nullptr;
|
|
for (unsigned i = 0, e = NumElts; i != e; ++i) {
|
|
if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
|
|
return nullptr;
|
|
}
|
|
Value *Res = PoisonValue::get(ExpectedType);
|
|
IRBuilder<> Builder(Inst);
|
|
for (unsigned i = 0, e = NumElts; i != e; ++i) {
|
|
Value *L = Inst->getArgOperand(i);
|
|
Res = Builder.CreateInsertValue(Res, L, i);
|
|
}
|
|
return Res;
|
|
}
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
if (Inst->getType() == ExpectedType)
|
|
return Inst;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
MemIntrinsicInfo &Info) {
|
|
switch (Inst->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
Info.ReadMem = true;
|
|
Info.WriteMem = false;
|
|
Info.PtrVal = Inst->getArgOperand(0);
|
|
break;
|
|
case Intrinsic::aarch64_neon_st2:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
case Intrinsic::aarch64_neon_st4:
|
|
Info.ReadMem = false;
|
|
Info.WriteMem = true;
|
|
Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
|
|
break;
|
|
}
|
|
|
|
switch (Inst->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_st2:
|
|
Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
case Intrinsic::aarch64_neon_st4:
|
|
Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// See if \p I should be considered for address type promotion. We check if \p
|
|
/// I is a sext with right type and used in memory accesses. If it used in a
|
|
/// "complex" getelementptr, we allow it to be promoted without finding other
|
|
/// sext instructions that sign extended the same initial value. A getelementptr
|
|
/// is considered as "complex" if it has more than 2 operands.
|
|
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
|
|
bool Considerable = false;
|
|
AllowPromotionWithoutCommonHeader = false;
|
|
if (!isa<SExtInst>(&I))
|
|
return false;
|
|
Type *ConsideredSExtType =
|
|
Type::getInt64Ty(I.getParent()->getParent()->getContext());
|
|
if (I.getType() != ConsideredSExtType)
|
|
return false;
|
|
// See if the sext is the one with the right type and used in at least one
|
|
// GetElementPtrInst.
|
|
for (const User *U : I.users()) {
|
|
if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
|
|
Considerable = true;
|
|
// A getelementptr is considered as "complex" if it has more than 2
|
|
// operands. We will promote a SExt used in such complex GEP as we
|
|
// expect some computation to be merged if they are done on 64 bits.
|
|
if (GEPInst->getNumOperands() > 2) {
|
|
AllowPromotionWithoutCommonHeader = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Considerable;
|
|
}
|
|
|
|
bool AArch64TTIImpl::isLegalToVectorizeReduction(
|
|
const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
|
|
if (!VF.isScalable())
|
|
return true;
|
|
|
|
Type *Ty = RdxDesc.getRecurrenceType();
|
|
if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
|
|
return false;
|
|
|
|
switch (RdxDesc.getRecurrenceKind()) {
|
|
case RecurKind::Add:
|
|
case RecurKind::FAdd:
|
|
case RecurKind::And:
|
|
case RecurKind::Or:
|
|
case RecurKind::Xor:
|
|
case RecurKind::SMin:
|
|
case RecurKind::SMax:
|
|
case RecurKind::UMin:
|
|
case RecurKind::UMax:
|
|
case RecurKind::FMin:
|
|
case RecurKind::FMax:
|
|
case RecurKind::SelectICmp:
|
|
case RecurKind::SelectFCmp:
|
|
case RecurKind::FMulAdd:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
|
|
bool IsUnsigned,
|
|
TTI::TargetCostKind CostKind) {
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
|
|
if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
|
|
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
|
|
|
|
assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
|
|
"Both vector needs to be equally scalable");
|
|
|
|
InstructionCost LegalizationCost = 0;
|
|
if (LT.first > 1) {
|
|
Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
|
|
unsigned MinMaxOpcode =
|
|
Ty->isFPOrFPVectorTy()
|
|
? Intrinsic::maxnum
|
|
: (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
|
|
IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
|
|
LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
|
|
}
|
|
|
|
return LegalizationCost + /*Cost of horizontal reduction*/ 2;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
|
|
unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
InstructionCost LegalizationCost = 0;
|
|
if (LT.first > 1) {
|
|
Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
|
|
LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
|
|
LegalizationCost *= LT.first - 1;
|
|
}
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
// Add the final reduction cost for the legal horizontal reduction
|
|
switch (ISD) {
|
|
case ISD::ADD:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::FADD:
|
|
return LegalizationCost + 2;
|
|
default:
|
|
return InstructionCost::getInvalid();
|
|
}
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (TTI::requiresOrderedReduction(FMF)) {
|
|
if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
|
|
InstructionCost BaseCost =
|
|
BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
// Add on extra cost to reflect the extra overhead on some CPUs. We still
|
|
// end up vectorizing for more computationally intensive loops.
|
|
return BaseCost + FixedVTy->getNumElements();
|
|
}
|
|
|
|
if (Opcode != Instruction::FAdd)
|
|
return InstructionCost::getInvalid();
|
|
|
|
auto *VTy = cast<ScalableVectorType>(ValTy);
|
|
InstructionCost Cost =
|
|
getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
|
|
Cost *= getMaxNumElements(VTy->getElementCount());
|
|
return Cost;
|
|
}
|
|
|
|
if (isa<ScalableVectorType>(ValTy))
|
|
return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
MVT MTy = LT.second;
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Horizontal adds can use the 'addv' instruction. We model the cost of these
|
|
// instructions as twice a normal vector add, plus 1 for each legalization
|
|
// step (LT.first). This is the only arithmetic vector reduction operation for
|
|
// which we have an instruction.
|
|
// OR, XOR and AND costs should match the codegen from:
|
|
// OR: llvm/test/CodeGen/AArch64/reduce-or.ll
|
|
// XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
|
|
// AND: llvm/test/CodeGen/AArch64/reduce-and.ll
|
|
static const CostTblEntry CostTblNoPairwise[]{
|
|
{ISD::ADD, MVT::v8i8, 2},
|
|
{ISD::ADD, MVT::v16i8, 2},
|
|
{ISD::ADD, MVT::v4i16, 2},
|
|
{ISD::ADD, MVT::v8i16, 2},
|
|
{ISD::ADD, MVT::v4i32, 2},
|
|
{ISD::ADD, MVT::v2i64, 2},
|
|
{ISD::OR, MVT::v8i8, 15},
|
|
{ISD::OR, MVT::v16i8, 17},
|
|
{ISD::OR, MVT::v4i16, 7},
|
|
{ISD::OR, MVT::v8i16, 9},
|
|
{ISD::OR, MVT::v2i32, 3},
|
|
{ISD::OR, MVT::v4i32, 5},
|
|
{ISD::OR, MVT::v2i64, 3},
|
|
{ISD::XOR, MVT::v8i8, 15},
|
|
{ISD::XOR, MVT::v16i8, 17},
|
|
{ISD::XOR, MVT::v4i16, 7},
|
|
{ISD::XOR, MVT::v8i16, 9},
|
|
{ISD::XOR, MVT::v2i32, 3},
|
|
{ISD::XOR, MVT::v4i32, 5},
|
|
{ISD::XOR, MVT::v2i64, 3},
|
|
{ISD::AND, MVT::v8i8, 15},
|
|
{ISD::AND, MVT::v16i8, 17},
|
|
{ISD::AND, MVT::v4i16, 7},
|
|
{ISD::AND, MVT::v8i16, 9},
|
|
{ISD::AND, MVT::v2i32, 3},
|
|
{ISD::AND, MVT::v4i32, 5},
|
|
{ISD::AND, MVT::v2i64, 3},
|
|
};
|
|
switch (ISD) {
|
|
default:
|
|
break;
|
|
case ISD::ADD:
|
|
if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
|
|
return (LT.first - 1) + Entry->Cost;
|
|
break;
|
|
case ISD::XOR:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
|
|
if (!Entry)
|
|
break;
|
|
auto *ValVTy = cast<FixedVectorType>(ValTy);
|
|
if (!ValVTy->getElementType()->isIntegerTy(1) &&
|
|
MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
|
|
isPowerOf2_32(ValVTy->getNumElements())) {
|
|
InstructionCost ExtraCost = 0;
|
|
if (LT.first != 1) {
|
|
// Type needs to be split, so there is an extra cost of LT.first - 1
|
|
// arithmetic ops.
|
|
auto *Ty = FixedVectorType::get(ValTy->getElementType(),
|
|
MTy.getVectorNumElements());
|
|
ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
|
|
ExtraCost *= LT.first - 1;
|
|
}
|
|
return Entry->Cost + ExtraCost;
|
|
}
|
|
break;
|
|
}
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
|
|
static const CostTblEntry ShuffleTbl[] = {
|
|
{ TTI::SK_Splice, MVT::nxv16i8, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv8i16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv4i32, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv2i64, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv2f16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv4f16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv8f16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv2bf16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv4bf16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv8bf16, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv2f32, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv4f32, 1 },
|
|
{ TTI::SK_Splice, MVT::nxv2f64, 1 },
|
|
};
|
|
|
|
// The code-generator is currently not able to handle scalable vectors
|
|
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
|
|
// it. This change will be removed when code-generation for these types is
|
|
// sufficiently reliable.
|
|
if (Tp->getElementCount() == ElementCount::getScalable(1))
|
|
return InstructionCost::getInvalid();
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
|
|
Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
EVT PromotedVT = LT.second.getScalarType() == MVT::i1
|
|
? TLI->getPromotedVTForPredicate(EVT(LT.second))
|
|
: LT.second;
|
|
Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
|
|
InstructionCost LegalizationCost = 0;
|
|
if (Index < 0) {
|
|
LegalizationCost =
|
|
getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
|
|
getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
}
|
|
|
|
// Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
|
|
// Cost performed on a promoted type.
|
|
if (LT.second.getScalarType() == MVT::i1) {
|
|
LegalizationCost +=
|
|
getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
|
|
TTI::CastContextHint::None, CostKind) +
|
|
getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
|
|
TTI::CastContextHint::None, CostKind);
|
|
}
|
|
const auto *Entry =
|
|
CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
|
|
assert(Entry && "Illegal Type for Splice");
|
|
LegalizationCost += Entry->Cost;
|
|
return LegalizationCost * LT.first;
|
|
}
|
|
|
|
InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
|
|
VectorType *Tp,
|
|
ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind,
|
|
int Index, VectorType *SubTp,
|
|
ArrayRef<const Value *> Args) {
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
|
|
// If we have a Mask, and the LT is being legalized somehow, split the Mask
|
|
// into smaller vectors and sum the cost of each shuffle.
|
|
if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
|
|
Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
|
|
cast<FixedVectorType>(Tp)->getNumElements() >
|
|
LT.second.getVectorNumElements() &&
|
|
!Index && !SubTp) {
|
|
unsigned TpNumElts = cast<FixedVectorType>(Tp)->getNumElements();
|
|
assert(Mask.size() == TpNumElts && "Expected Mask and Tp size to match!");
|
|
unsigned LTNumElts = LT.second.getVectorNumElements();
|
|
unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
|
|
VectorType *NTp =
|
|
VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount());
|
|
InstructionCost Cost;
|
|
for (unsigned N = 0; N < NumVecs; N++) {
|
|
SmallVector<int> NMask;
|
|
// Split the existing mask into chunks of size LTNumElts. Track the source
|
|
// sub-vectors to ensure the result has at most 2 inputs.
|
|
unsigned Source1, Source2;
|
|
unsigned NumSources = 0;
|
|
for (unsigned E = 0; E < LTNumElts; E++) {
|
|
int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
|
|
: UndefMaskElem;
|
|
if (MaskElt < 0) {
|
|
NMask.push_back(UndefMaskElem);
|
|
continue;
|
|
}
|
|
|
|
// Calculate which source from the input this comes from and whether it
|
|
// is new to us.
|
|
unsigned Source = MaskElt / LTNumElts;
|
|
if (NumSources == 0) {
|
|
Source1 = Source;
|
|
NumSources = 1;
|
|
} else if (NumSources == 1 && Source != Source1) {
|
|
Source2 = Source;
|
|
NumSources = 2;
|
|
} else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
|
|
NumSources++;
|
|
}
|
|
|
|
// Add to the new mask. For the NumSources>2 case these are not correct,
|
|
// but are only used for the modular lane number.
|
|
if (Source == Source1)
|
|
NMask.push_back(MaskElt % LTNumElts);
|
|
else if (Source == Source2)
|
|
NMask.push_back(MaskElt % LTNumElts + LTNumElts);
|
|
else
|
|
NMask.push_back(MaskElt % LTNumElts);
|
|
}
|
|
// If the sub-mask has at most 2 input sub-vectors then re-cost it using
|
|
// getShuffleCost. If not then cost it using the worst case.
|
|
if (NumSources <= 2)
|
|
Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc
|
|
: TTI::SK_PermuteTwoSrc,
|
|
NTp, NMask, CostKind, 0, nullptr, Args);
|
|
else if (any_of(enumerate(NMask), [&](const auto &ME) {
|
|
return ME.value() % LTNumElts == ME.index();
|
|
}))
|
|
Cost += LTNumElts - 1;
|
|
else
|
|
Cost += LTNumElts;
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
Kind = improveShuffleKindFromMask(Kind, Mask);
|
|
|
|
// Check for broadcast loads.
|
|
if (Kind == TTI::SK_Broadcast) {
|
|
bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
|
|
if (IsLoad && LT.second.isVector() &&
|
|
isLegalBroadcastLoad(Tp->getElementType(),
|
|
LT.second.getVectorElementCount()))
|
|
return 0; // broadcast is handled by ld1r
|
|
}
|
|
|
|
// If we have 4 elements for the shuffle and a Mask, get the cost straight
|
|
// from the perfect shuffle tables.
|
|
if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) &&
|
|
(Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
|
|
all_of(Mask, [](int E) { return E < 8; }))
|
|
return getPerfectShuffleCost(Mask);
|
|
|
|
if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
|
|
Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
|
|
Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
|
|
static const CostTblEntry ShuffleTbl[] = {
|
|
// Broadcast shuffle kinds can be performed with 'dup'.
|
|
{TTI::SK_Broadcast, MVT::v8i8, 1},
|
|
{TTI::SK_Broadcast, MVT::v16i8, 1},
|
|
{TTI::SK_Broadcast, MVT::v4i16, 1},
|
|
{TTI::SK_Broadcast, MVT::v8i16, 1},
|
|
{TTI::SK_Broadcast, MVT::v2i32, 1},
|
|
{TTI::SK_Broadcast, MVT::v4i32, 1},
|
|
{TTI::SK_Broadcast, MVT::v2i64, 1},
|
|
{TTI::SK_Broadcast, MVT::v2f32, 1},
|
|
{TTI::SK_Broadcast, MVT::v4f32, 1},
|
|
{TTI::SK_Broadcast, MVT::v2f64, 1},
|
|
// Transpose shuffle kinds can be performed with 'trn1/trn2' and
|
|
// 'zip1/zip2' instructions.
|
|
{TTI::SK_Transpose, MVT::v8i8, 1},
|
|
{TTI::SK_Transpose, MVT::v16i8, 1},
|
|
{TTI::SK_Transpose, MVT::v4i16, 1},
|
|
{TTI::SK_Transpose, MVT::v8i16, 1},
|
|
{TTI::SK_Transpose, MVT::v2i32, 1},
|
|
{TTI::SK_Transpose, MVT::v4i32, 1},
|
|
{TTI::SK_Transpose, MVT::v2i64, 1},
|
|
{TTI::SK_Transpose, MVT::v2f32, 1},
|
|
{TTI::SK_Transpose, MVT::v4f32, 1},
|
|
{TTI::SK_Transpose, MVT::v2f64, 1},
|
|
// Select shuffle kinds.
|
|
// TODO: handle vXi8/vXi16.
|
|
{TTI::SK_Select, MVT::v2i32, 1}, // mov.
|
|
{TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
|
|
{TTI::SK_Select, MVT::v2i64, 1}, // mov.
|
|
{TTI::SK_Select, MVT::v2f32, 1}, // mov.
|
|
{TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
|
|
{TTI::SK_Select, MVT::v2f64, 1}, // mov.
|
|
// PermuteSingleSrc shuffle kinds.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i16, 8}, // constpool + load + tbl
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f16, 8}, // constpool + load + tbl
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i8, 8}, // constpool + load + tbl
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i8, 8}, // constpool + load + tbl
|
|
// Reverse can be lowered with `rev`.
|
|
{TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
|
|
{TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
|
|
{TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
|
|
{TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
|
|
{TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
|
|
{TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
|
|
{TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
|
|
{TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
|
|
{TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
|
|
{TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
|
|
{TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
|
|
{TTI::SK_Reverse, MVT::v8i8, 1}, // REV64
|
|
// Splice can all be lowered as `ext`.
|
|
{TTI::SK_Splice, MVT::v2i32, 1},
|
|
{TTI::SK_Splice, MVT::v4i32, 1},
|
|
{TTI::SK_Splice, MVT::v2i64, 1},
|
|
{TTI::SK_Splice, MVT::v2f32, 1},
|
|
{TTI::SK_Splice, MVT::v4f32, 1},
|
|
{TTI::SK_Splice, MVT::v2f64, 1},
|
|
{TTI::SK_Splice, MVT::v8f16, 1},
|
|
{TTI::SK_Splice, MVT::v8bf16, 1},
|
|
{TTI::SK_Splice, MVT::v8i16, 1},
|
|
{TTI::SK_Splice, MVT::v16i8, 1},
|
|
{TTI::SK_Splice, MVT::v4bf16, 1},
|
|
{TTI::SK_Splice, MVT::v4f16, 1},
|
|
{TTI::SK_Splice, MVT::v4i16, 1},
|
|
{TTI::SK_Splice, MVT::v8i8, 1},
|
|
// Broadcast shuffle kinds for scalable vectors
|
|
{TTI::SK_Broadcast, MVT::nxv16i8, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv8i16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv4i32, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv2i64, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv2f16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv4f16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv8f16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv2bf16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv4bf16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv8bf16, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv2f32, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv4f32, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv2f64, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv16i1, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv8i1, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv4i1, 1},
|
|
{TTI::SK_Broadcast, MVT::nxv2i1, 1},
|
|
// Handle the cases for vector.reverse with scalable vectors
|
|
{TTI::SK_Reverse, MVT::nxv16i8, 1},
|
|
{TTI::SK_Reverse, MVT::nxv8i16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv4i32, 1},
|
|
{TTI::SK_Reverse, MVT::nxv2i64, 1},
|
|
{TTI::SK_Reverse, MVT::nxv2f16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv4f16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv8f16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv2bf16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv4bf16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv8bf16, 1},
|
|
{TTI::SK_Reverse, MVT::nxv2f32, 1},
|
|
{TTI::SK_Reverse, MVT::nxv4f32, 1},
|
|
{TTI::SK_Reverse, MVT::nxv2f64, 1},
|
|
{TTI::SK_Reverse, MVT::nxv16i1, 1},
|
|
{TTI::SK_Reverse, MVT::nxv8i1, 1},
|
|
{TTI::SK_Reverse, MVT::nxv4i1, 1},
|
|
{TTI::SK_Reverse, MVT::nxv2i1, 1},
|
|
};
|
|
if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
|
|
if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
|
|
return getSpliceCost(Tp, Index);
|
|
|
|
// Inserting a subvector can often be done with either a D, S or H register
|
|
// move, so long as the inserted vector is "aligned".
|
|
if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
|
|
LT.second.getSizeInBits() <= 128 && SubTp) {
|
|
std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
|
|
if (SubLT.second.isVector()) {
|
|
int NumElts = LT.second.getVectorNumElements();
|
|
int NumSubElts = SubLT.second.getVectorNumElements();
|
|
if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
|
|
return SubLT.first;
|
|
}
|
|
}
|
|
|
|
return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
|
|
}
|
|
|
|
bool AArch64TTIImpl::preferPredicateOverEpilogue(
|
|
Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
|
|
TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL,
|
|
InterleavedAccessInfo *IAI) {
|
|
if (!ST->hasSVE() || TailFoldingKindLoc == TailFoldingKind::TFDisabled)
|
|
return false;
|
|
|
|
// We don't currently support vectorisation with interleaving for SVE - with
|
|
// such loops we're better off not using tail-folding. This gives us a chance
|
|
// to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
|
|
if (IAI->hasGroups())
|
|
return false;
|
|
|
|
TailFoldingKind Required; // Defaults to 0.
|
|
if (LVL->getReductionVars().size())
|
|
Required.add(TailFoldingKind::TFReductions);
|
|
if (LVL->getFixedOrderRecurrences().size())
|
|
Required.add(TailFoldingKind::TFRecurrences);
|
|
if (!Required)
|
|
Required.add(TailFoldingKind::TFSimple);
|
|
|
|
return (TailFoldingKindLoc & Required) == Required;
|
|
}
|
|
|
|
InstructionCost
|
|
AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale, unsigned AddrSpace) const {
|
|
// Scaling factors are not free at all.
|
|
// Operands | Rt Latency
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm] | 4
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
|
|
// Rt, [Xn, Wm, <extend> #imm] |
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
|
|
// Scale represents reg2 * scale, thus account for 1 if
|
|
// it is not equal to 0 or 1.
|
|
return AM.Scale != 0 && AM.Scale != 1;
|
|
return -1;
|
|
}
|