* Replace getUserCost with getInstructionCost, covering all cost kinds.
* Remove getInstructionLatency, it's not implemented by any backends, and we should fold the functionality into getUserCost (now getInstructionCost) to make it easier for targets to handle the cost kinds with their existing cost callbacks.
Original Patch by @samparker (Sam Parker)
Differential Revision: https://reviews.llvm.org/D79483
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Since we can't change the destination of indirectbr, so when
encounter indirectbr as PredPredBB terminator, we should pass it.
Differential Revision: https://reviews.llvm.org/D129193
SplitBlockPredecessors currently asserts if one of the predecessor
terminators is a callbr. This limitation was originally necessary,
because just like with indirectbr, it was not possible to replace
successors of a callbr. However, this is no longer the case since
D67252. As the requirement nowadays is that callbr must reference
all blockaddrs directly in the call arguments, and these get
automatically updated when setSuccessor() is called, we no longer
need this limitation.
The only thing we need to do here is use replaceSuccessorWith()
instead of replaceUsesOfWith(), because only the former does the
necessary blockaddr updating magic.
I believe there's other similar limitations that can be removed,
e.g. related to critical edge splitting.
Differential Revision: https://reviews.llvm.org/D129205
This code requires the result to be an UndefValue/ConstantInt
anyway (checked by getKnownConstant), so we are only interested
in the case where this folds.
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
This whole part with recomputation of BPI and BFI looks redundant,
and we tried to get rid of it in D124439. Unfortunately, it causes
some hard-to-reproduce failures due to invalid state of analysis.
Until this is investigated and fixed, let's try to reuse at least
part of available analyzes.
DT is available at this point, and there is no need to recompute it.
Please revert if you see it causing *any* behavior changes.
All callers pass true.
select-unfold-freeze.ll is now a subset of select.ll so delete it.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D126501
JumpThreading may convert selects into branch instructions,
in which case the condition needs to be frozen (as branch on
poison is immediate undefined behavior, unlike select on poison).
The necessary code for this is already in place, this just enables
the option.
Differential Revision: https://reviews.llvm.org/D125869
This code is valid for any icmp, so we can safely look through a
freeze when trying to find one.
A caveat here is that replaceFoldableUses() may not end up replacing
any uses in this case. It might make sense to use the freeze as the
context instruction (rather than the terminator) if there is a
freeze, to ensure that it always gets folded. This would require
some changes to how replaceFoldedUses() works though, as it
currently assumes that the value is valid at the end of the block.
It's sufficient to just fold the icmp to true/false here, and then
let constant terminator folding take care of the rest.
It should be noted that while replaceFoldableUses() may not replace
all uses of the icmp, at least the use in the terminator we're
working on is always replaceable, so terminator constant folding
should be reliably enabled as a subsequent step.
This patch makes JumpThreading's ProcessImpliedCondition deal with frozen
conditions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84941
JumpThreading intentionally does not force updating of the DT
during optimization, because this may be expensive when many CFG
updates and DT calculations are interleaved.
We shouldn't be fetching the DT just for the purpose of calling
isGuaranteedNotToBeUndefOrPoison(), especially as DT availability
doesn't even show benefit in tests.
They can already be available, and even if not, DT/LI can be available.
We should not recompute them. Old PM is unchanged because it would
require changing dependencies, and we don't care enough about it.
Differential Revision: https://reviews.llvm.org/D124439
Reviewed By: nikic, aeubanks
After e734e8286b, it is possible to end up in
a situation where an `indirectbr` is fed by a cast, which is in turn fed by
an operation which only produces integers.
`indirectbr` expects a block address, however these operations can't produce
that.
There were several asserts in `computeValueKnownInPredecessorsImpl` which check
that we're not looking for a block address if we're walking through something
which can never produce one.
Since it's now possible to hit these asserts, this changes them into actual
checks which return false if `Preference` is not `WantInteger`.
This adds a testcase which verifies that we don't crash anymore in these
situations.
Differential Revision: https://reviews.llvm.org/D99814
It seems the crashes we saw wasn't caused by this (see comments on the review).
> This is basically D108837 but for jump threading. Free instructions
> should be ignored for the threading decision. JumpThreading already
> skips some free instructions (like pointer bitcasts), but does not
> skip various free intrinsics -- in fact, it currently gives them a
> fairly large cost of 2.
>
> Differential Revision: https://reviews.llvm.org/D110290
This reverts commit 4604695d7c.
It caused compiler crashes, see comment on the code review for repro.
> This is basically D108837 but for jump threading. Free instructions
> should be ignored for the threading decision. JumpThreading already
> skips some free instructions (like pointer bitcasts), but does not
> skip various free intrinsics -- in fact, it currently gives them a
> fairly large cost of 2.
>
> Differential Revision: https://reviews.llvm.org/D110290
This reverts commit 1e3c6fc7cb.
This is basically D108837 but for jump threading. Free instructions
should be ignored for the threading decision. JumpThreading already
skips some free instructions (like pointer bitcasts), but does not
skip various free intrinsics -- in fact, it currently gives them a
fairly large cost of 2.
Differential Revision: https://reviews.llvm.org/D110290
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.
I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D104477
Currently all AA analyses marked as preserved are stateless, not taking
into account their dependent analyses. So there's no need to mark them
as preserved, they won't be invalidated unless their analyses are.
SCEVAAResults was the one exception to this, it was treated like a
typical analysis result. Make it like the others and don't invalidate
unless SCEV is invalidated.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102032
Jump threading can replace select then unconditional branch with
conditional branch, but when doing so loses debug info.
This destructive transform is eventually leading to a failed Verifier
run during full LTO builds of the Linux kernel with CFI and KCOV
enabled, as reported in PR39531.
ModuleSanitizerCoveragePass will insert calls to
__sanitizer_cov_trace_pc, and sometimes split critical edges,
using whatever debug info may or may not exist for the branch for
the added libcall. Since we can inline calls to
__sanitizer_cov_trace_pc due to LTO, this can lead to the error
observed in PR39531 when the debug info isn't propagated to
the libcall, because of prior destructive transforms that failed to
retain debug info.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100137
The default is likely wrong.
Out of all the callees, only a single one needs to pass-in false (JumpThread),
everything else either already passes true, or should pass true.
Until the default is flipped, at least make it harder to unintentionally
add new callees with UseBlockValue=false.
FindAvailableLoadedValue() relies on FindAvailablePtrLoadStore() to run
the alias analysis when searching for an equivalent value. However,
FindAvailablePtrLoadStore() calls the alias analysis framework with a
memory location for the load constructed from an address and a size,
which thus lacks TBAA metadata info. This commit modifies
FindAvailablePtrLoadStore() to accept an optional memory location as
parameter to allow FindAvailableLoadedValue() to create it based on the
load instruction, which would then have TBAA metadata info attached.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99206
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the same original block. Therefore, there's no need to keep multiple copies of them. I've seen jump threading created tons of redundant dangling probes that slowed down the compiler dramatically. Other optimization passes can also result in redundant probes though without an observed impact so far.
This change removes block-wise redundant dangling probes specifically introduced by jump threading. To support removing redundant dangling probes caused by all other passes, a final function-wise deduplication is also added.
An 18% size win of the .pseudo_probe section was seen for SPEC2017. No performance difference was observed.
Differential Revision: https://reviews.llvm.org/D97482
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
When cloning instructions during jump threading, also clone and
adapt any declared scopes. This is primarily important when
threading loop exits, because we'll end up with two dominating
scope declarations in that case (at least after additional loop
rotation). This addresses a loose thread from
https://reviews.llvm.org/rG2556b413a7b8#975012.
Differential Revision: https://reviews.llvm.org/D97154
Details: Jump Threading does not make sense for the targets with divergent CF
since they do not use branch prediction for speculative execution.
Also in the high level IR there is no enough information to conclude that the branch is divergent or uniform.
This may cause errors in further CF lowering.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D93302
This patch teaches the jump threading pass to call BPI->eraseBlock
when it folds a conditional branch.
Without this patch, BranchProbabilityInfo could end up with stale edge
probabilities for the basic block containing the conditional branch --
one edge probability with less than 1.0 and the other for a removed
edge.
Differential Revision: https://reviews.llvm.org/D92608
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues:
1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality.
2. The counter atomics may not be fully cleaned up from the code stream eventually.
3. Extra work is needed for re-targeting.
We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality.
Let's now look at an example. Given the following LLVM IR:
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
br label %bb3
bb3:
ret void
}
```
The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID.
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86490
When instructions are cloned from block BB to PredBB in the method
DuplicateCondBranchOnPHIIntoPred() number of successors of PredBB
changes from 1 to number of successors of BB. So we have to copy
branch probabilities from BB to PredBB.
Reviewed By: Kazu Hirata
Differential Revision: https://reviews.llvm.org/D90841
This patch teaches the jump threading pass to call BPI->eraseBlock
when it folds a conditional branch.
Without this patch, BranchProbabilityInfo could end up with stale edge
probabilities for the basic block containing the conditional branch --
one edge probability with less than 1.0 and the other for a removed
edge.
This patch is one of the steps before we can safely re-apply D91017.
Differential Revision: https://reviews.llvm.org/D91511
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This patch removes extraneous calls to setEdgeProbability introduced
in c91487769d.
The follow-up patch, a7b662d0f4, has
since fixed BranchProbabilityInfo::eraseBlock, so we don't need to
worry about getting stale values from getEdgeProbability.
Also, since getEdgeProbability(BB, BB->getSingleSuccessor()) returns
edge probability 1/1 by default for BB with exactly one successor
edge, we don't need to explicitly call setEdgeProbability.
This patch introduces almost no functional change, but we do end up
reducing debug messages from setEdgeProbability.
Differential Revision: https://reviews.llvm.org/D90284