This patch contains enough for lib/Target/SPIRV to compile: a basic
SPIRVTargetMachine and SPIRVTargetInfo.
Differential Revision: https://reviews.llvm.org/D115009
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
specifying DW_AT_trampoline as a string. Also update the signature
of DIBuilder::createFunction to reflect this addition.
Differential Revision: https://reviews.llvm.org/D123697
We've found that there are cases where it's useful to be able to include
the same target in multiple distributions (e.g. if you want a
distribution that's a superset of another distribution, for convenience
purposes), and that there are cases where the distribution of a target
and its umbrella can legitimately differ (e.g. the LTO library would
commonly be distributed alongside your tools, but it also falls under
the llvm-libraries umbrella, which would commonly be distributed
separately). Relax the restrictions while providing an option to restore
them (which is mostly useful to ensure you aren't accidentally placing
targets in the wrong distributions).
There could be further refinements here (e.g. excluding a target from an
umbrella if it's explicitly included in some other distribution, or
having variables to control which targets are allowed to be duplicated
or placed in a separate distribution than their umbrellas), but we can
punt on those until there's an actual need.
This patch adds support for inline assembly address operands using the "p"
constraint on X86 and SystemZ.
This was in fact broken on X86 (see example at
https://reviews.llvm.org/D110267, Nov 23).
These operands should probably be treated the same as memory operands by
CodeGenPrepare, which have been commented with "TODO" there.
Review: Xiang Zhang and Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D122220
Summary:
Introduce a new function attribute, amdgpu-no-multigrid-sync-arg, which is default.
We use implicitarg_ptr + offset to check whether the multigrid synchronization
pointer is used. If yes, we remove this attribute and also remove
amdgpu-no-implicitarg-ptr. We generate metadata for the hidden_multigrid_sync_arg
only when the amdgpu-no-multigrid-sync-arg attribute is removed from the function.
Reviewers: arsenm, sameerds, b-sumner and foad
Differential Revision: https://reviews.llvm.org/D123548
The description has been updated to reflect AMDGPU MC changes:
- enabled literals for src0 of v_fmaak_f*, v_fmamk_f*, v_madak_f32, v_madmk_f32;
- enabled global_atomic_fcmpswap and global_atomic_fcmpswap_x2;
- enabled dlc with flat_atomic* and global_atomic_*.
Bug fixing and improvements:
- enabled s_wait_idle;
- enabled s_waitcnt_depctr;
- added description of s_waitcnt_depctr syntactic sugar;
- disabled SYSMSG_OP_HOST_TRAP_ACK (it is not supported on GFX10);
- corrected description of lgkmcnt (accept values from 0 to 63).
Or rather, error out if it is set to something other than ON. This
removes the ability to enable the legacy pass manager by default,
but does not remove the ability to explicitly enable it through
various flags like -flegacy-pass-manager or -enable-new-pm=0.
I checked, and our test suite definitely doesn't pass with
LLVM_ENABLE_NEW_PASS_MANAGER=OFF anymore.
Differential Revision: https://reviews.llvm.org/D123126
The diagnostic is unreliable, and triggers even for dead uses of
hostcall that may exist when linking the device-libs at lower
optimization levels.
Eliminate the diagnostic, and directly document the limitation for
OpenCL before code object V5.
Make some NFC changes to clarify the related code in the
MetadataStreamer.
Add a clang test to tie OCL sources containing printf to the backend IR
tests for this situation.
Reviewed By: sameerds, arsenm, yaxunl
Differential Revision: https://reviews.llvm.org/D121951
Point people to the cc1 instead of the mllvm flag, as the mllvm
flag will stop working for clang usage at some point.
Update transition state to mention that support in Clang/LLVM is
complete, and only the default switch is pending.
I noticed that when --update-section was added to llvm-objcopy it was
not added to the command guide, see
25bcd94234. This change adds it to the
docs and updates the help text.
Differential Revision: https://reviews.llvm.org/D122907
This option tells the host clang to use the new pass manager.
Given that it's been the default for a while, this seems unnecessary.
This was added in D57068.
(this does not affect any LLVM/Clang functionality)
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D122947
https://reviews.llvm.org/D116787
This reverts commit 33b3c86afa.
New change: fixed build failures:
- in stabs-sorted:restore the the ERR-KEY statements, which were accidentally deleted during refactoring
- in ObjDumper.h/MachODumper.cpp: refactor so that current dumpers which didn't provide an impl that accept a SymCom still works
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
Add documentation describing how to
- Use `llvm-remark-size-diff`
- Interpret the output from the tool
Differential Revision: https://reviews.llvm.org/D122744
This patch mostly follows up on D121292 which introduced the vp.fcmp
intrinsic.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D122729
This patch adds the first support for vector-predicated comparison
intrinsics, starting with vp.fcmp. It uses metadata to encode its
condition code, like the llvm.experimental.constrained.fcmp intrinsic.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D121292
Includes 2 corrections:
* Update irreducible control flow and add references to CycleTerminology;
Natural loop is not the only definition of something looping in LLVM anymore.
* Mention mustprogress loop and function attributes to be used
instead of the llvm.sideeffect intrinsic.
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
The repository field we want to leave blank is on the page as the
`Create Diff` button, so merged the instructions about leaving the
field blank and clicking the button.
Add explanations for WPD(whole program devirtualization) and another meaning for CFI(control flow Integrity).
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D122473
This patch adds a generic fuzzer that interprets inputs as object files
and uses them to create a target in lldb. It is very similar to the
llvm-dwarfdump fuzzer which found a bunch of issues in libObject.
Differential revision: https://reviews.llvm.org/D122461