Commit Graph

31 Commits

Author SHA1 Message Date
Fangrui Song d86a206f06 Remove unneeded cl::ZeroOrMore for cl::opt/cl::list options 2022-06-05 00:31:44 -07:00
River Riddle 58ceae9561 [mlir:NFC] Remove the forward declaration of FuncOp in the mlir namespace
FuncOp has been moved to the `func` namespace for a little over a month, the
using directive can be dropped now.
2022-04-18 12:01:55 -07:00
River Riddle 5e50dd048e [mlir] Rework the implementation of TypeID
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.

To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.

This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.

Differential Revision: https://reviews.llvm.org/D122775
2022-04-04 13:52:26 -07:00
River Riddle 3655069234 [mlir] Move the Builtin FuncOp to the Func dialect
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.

Differential Revision: https://reviews.llvm.org/D121266
2022-03-16 17:07:03 -07:00
Matthias Springer 99ef9eebad [mlir][vector][NFC] Split into IR, Transforms and Utils
This reduces the dependencies of the MLIRVector target and makes the dialect consistent with other dialects.

Differential Revision: https://reviews.llvm.org/D118533
2022-01-31 19:17:09 +09:00
River Riddle a70aa7bb0d [mlir:Transforms] Move out the remaining non-dialect independent transforms and utilities
This has been a major TODO for a very long time, and is necessary for establishing a proper
dialect-free dependency layering for the Transforms library. Code was moved to effectively
two main locations:

* Affine/
There was quite a bit of affine dialect related code in Transforms/ do to historical reasons
(of a time way into MLIR's past). The following headers were moved to:
Transforms/LoopFusionUtils.h -> Dialect/Affine/LoopFusionUtils.h
Transforms/LoopUtils.h -> Dialect/Affine/LoopUtils.h
Transforms/Utils.h -> Dialect/Affine/Utils.h

The following transforms were also moved:
AffineLoopFusion, AffinePipelineDataTransfer, LoopCoalescing

* SCF/
Only one SCF pass was in Transforms/ (likely accidentally placed here): ParallelLoopCollapsing
The SCF specific utilities in LoopUtils have been moved to SCF/Utils.h

* Misc:
mlir::moveLoopInvariantCode was also moved to LoopLikeInterface.h given
that it is a simple utility defined in terms of LoopLikeOpInterface.

Differential Revision: https://reviews.llvm.org/D117848
2022-01-24 19:25:53 -08:00
River Riddle 4157455425 [mlir][Pass] Deprecate FunctionPass in favor of OperationPass<FuncOp>
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.

The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.

Differential Revision: https://reviews.llvm.org/D117182
2022-01-18 19:52:44 -08:00
River Riddle 755dc07d69 [mlir:Analysis] Move the LoopAnalysis library to Dialect/Affine/Analysis
The current state of the top level Analysis/ directory is that it contains two libraries;
a generic Analysis library (free from dialect dependencies), and a LoopAnalysis library
that contains various analysis utilities that originated from Affine loop transformations.
This commit moves the LoopAnalysis to the more appropriate home of `Dialect/Affine/Analysis/`,
given the use and intention of the majority of the code within it. After the move, if there
are generic utilities that would fit better in the top-level Analysis/ directory, we can move
them.

Differential Revision: https://reviews.llvm.org/D117351
2022-01-18 10:28:22 -08:00
Mehdi Amini be0a7e9f27 Adjust "end namespace" comment in MLIR to match new agree'd coding style
See D115115 and this mailing list discussion:
https://lists.llvm.org/pipermail/llvm-dev/2021-December/154199.html

Differential Revision: https://reviews.llvm.org/D115309
2021-12-08 06:05:26 +00:00
Mehdi Amini b5e22e6d42 Migrate MLIR test passes to the new registration API
Make sure they all define getArgument()/getDescription().

Depends On D104421

Differential Revision: https://reviews.llvm.org/D104426
2021-06-16 23:42:17 +00:00
River Riddle 4efb7754e0 [mlir][NFC] Add a using directive for llvm::SetVector
Differential Revision: https://reviews.llvm.org/D100436
2021-04-15 16:09:34 -07:00
River Riddle e21adfa32d [mlir] Mark LogicalResult as LLVM_NODISCARD
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.

Differential Revision: https://reviews.llvm.org/D95841
2021-02-04 15:10:10 -08:00
Eric Christopher 22eb1cf89f Remove unused functions. 2021-01-19 14:44:34 -08:00
Nicolas Vasilache 93a873dfc9 [mlir][Affine] Revisit and simplify composeAffineMapAndOperands.
In prehistorical times, AffineApplyOp was allowed to produce multiple values.
This allowed the creation of intricate SSA use-def chains.
AffineApplyNormalizer was originally introduced as a means of reusing the AffineMap::compose method to write SSA use-def chains.
Unfortunately, symbols that were produced by an AffineApplyOp needed to be promoted to dims and reordered for the mathematical composition to be valid.

Since then, single result AffineApplyOp became the law of the land but the original assumptions were not revisited.

This revision revisits these assumptions and retires AffineApplyNormalizer.

Differential Revision: https://reviews.llvm.org/D94920
2021-01-19 13:52:07 +00:00
River Riddle 09f7a55fad [mlir][Types][NFC] Move all of the builtin Type classes to BuiltinTypes.h
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.

Differential Revision: https://reviews.llvm.org/D92435
2020-12-03 18:02:10 -08:00
Diego Caballero 93936da904 [mlir][Affine][VectorOps] Fix super vectorizer utility (D85869)
Adding missing code that should have been part of "D85869: Utility to
vectorize loop nest using strategy."

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D88346
2020-09-28 16:24:11 -07:00
Mehdi Amini f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
Mehdi Amini 25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 2056393387.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini 2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00
Rahul Joshi 2eaadfc4fe [NFC] Use llvm::hasSingleElement() in place of .size() == 1
- Also use functions in Region instead of Region::getBlocks() where possible.

Differential Revision: https://reviews.llvm.org/D82032
2020-06-17 13:26:10 -07:00
River Riddle 92f1562f3d [mlir][NFC] Remove the STLExtras.h header file now that it has been merged into LLVM.
Now that no more utilities exist within, this file can be deleted.

Differential Revision: https://reviews.llvm.org/D78079
2020-04-14 15:14:41 -07:00
River Riddle 2f21a57966 [llvm][STLExtras] Move the algorithm `interleave*` methods from MLIR to LLVM
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.

Differential Revision: https://reviews.llvm.org/D78067
2020-04-14 15:14:40 -07:00
River Riddle d3588d0814 [mlir][NFC] Replace mlir/Support/Functional.h with llvm equivalents.
Summary: Functional.h contains many different methods that have a direct, and more efficient, equivalent in LLVM. This revision replaces all usages with the LLVM equivalent, and removes the header. This is part of larger cleanup, pr45513, merging MLIR support facilities into LLVM.

Differential Revision: https://reviews.llvm.org/D78053
2020-04-13 14:22:12 -07:00
River Riddle 80aca1eaf7 [mlir][Pass] Remove the use of CRTP from the Pass classes
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.

Differential Revision: https://reviews.llvm.org/D77350
2020-04-07 14:08:52 -07:00
Uday Bondhugula b873761496 [MLIR][NFC] Move some of the affine transforms / tests to dialect dirs
Move some of the affine transforms and their test cases to their
respective dialect directory. This patch does not complete the move, but
takes care of a good part.

Renames: prefix 'affine' to affine loop tiling cl options,
vectorize -> super-vectorize

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Differential Revision: https://reviews.llvm.org/D76565
2020-03-23 08:25:07 +05:30