Commit Graph

335 Commits

Author SHA1 Message Date
Fangrui Song d86a206f06 Remove unneeded cl::ZeroOrMore for cl::opt/cl::list options 2022-06-05 00:31:44 -07:00
Martin Storsjö 2ab19bfa41 [ARM] Adjust the frame pointer when it's needed for SEH unwinding
For functions that require restoring SP from FP (e.g. that need to
align the stack, or that have variable sized allocations), the prologue
and epilogue previously used to look like this:

    push {r4-r5, r11, lr}
    add r11, sp, #8
    ...
    sub r4, r11, #8
    mov sp, r4
    pop {r4-r5, r11, pc}

This is problematic, because this unwinding operation (restoring sp
from r11 - offset) can't be expressed with the SEH unwind opcodes
(probably because this unwind procedure doesn't map exactly to
individual instructions; note the detour via r4 in the epilogue too).

To make unwinding work, the GPR push is split into two; the first one
pushing all other registers, and the second one pushing r11+lr, so that
r11 can be set pointing at this spot on the stack:

    push {r4-r5}
    push {r11, lr}
    mov r11, sp
    ...
    mov sp, r11
    pop {r11, lr}
    pop {r4-r5}
    bx lr

For the same setup, MSVC generates code that uses two registers;
r11 still pointing at the {r11,lr} pair, but a separate register
used for restoring the stack at the end:

    push {r4-r5, r7, r11, lr}
    add r11, sp, #12
    mov r7, sp
    ...
    mov sp, r7
    pop {r4-r5, r7, r11, pc}

For cases with clobbered float/vector registers, they are pushed
after the GPRs, before the {r11,lr} pair.

Differential Revision: https://reviews.llvm.org/D125649
2022-06-02 12:28:46 +03:00
David Penry dcb77643e3 Reapply [CodeGen][ARM] Enable Swing Module Scheduling for ARM
Fixed "private field is not used" warning when compiled
with clang.

original commit: 28d09bbbc3
reverted in: fa49021c68

------

This patch permits Swing Modulo Scheduling for ARM targets
turns it on by default for the Cortex-M7.  The t2Bcc
instruction is recognized as a loop-ending branch.

MachinePipeliner is extended by adding support for
"unpipelineable" instructions.  These instructions are
those which contribute to the loop exit test; in the SMS
papers they are removed before creating the dependence graph
and then inserted into the final schedule of the kernel and
prologues. Support for these instructions was not previously
necessary because current targets supporting SMS have only
supported it for hardware loop branches, which have no
loop-exit-contributing instructions in the loop body.

The current structure of the MachinePipeliner makes it difficult
to remove/exclude these instructions from the dependence graph.
Therefore, this patch leaves them in the graph, but adds a
"normalization" method which moves them in the schedule to
stage 0, which causes them to appear properly in kernel and
prologues.

It was also necessary to be more careful about boundary nodes
when iterating across successors in the dependence graph because
the loop exit branch is now a non-artificial successor to
instructions in the graph. In additional, schedules with physical
use/def pairs in the same cycle should be treated as creating an
invalid schedule because the scheduling logic doesn't respect
physical register dependence once scheduled to the same cycle.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D122672
2022-04-29 10:54:39 -07:00
David Penry fa49021c68 Revert "[CodeGen][ARM] Enable Swing Module Scheduling for ARM"
This reverts commit 28d09bbbc3
while I investigate a buildbot failure.
2022-04-28 13:29:27 -07:00
David Penry 28d09bbbc3 [CodeGen][ARM] Enable Swing Module Scheduling for ARM
This patch permits Swing Modulo Scheduling for ARM targets
turns it on by default for the Cortex-M7.  The t2Bcc
instruction is recognized as a loop-ending branch.

MachinePipeliner is extended by adding support for
"unpipelineable" instructions.  These instructions are
those which contribute to the loop exit test; in the SMS
papers they are removed before creating the dependence graph
and then inserted into the final schedule of the kernel and
prologues. Support for these instructions was not previously
necessary because current targets supporting SMS have only
supported it for hardware loop branches, which have no
loop-exit-contributing instructions in the loop body.

The current structure of the MachinePipeliner makes it difficult
to remove/exclude these instructions from the dependence graph.
Therefore, this patch leaves them in the graph, but adds a
"normalization" method which moves them in the schedule to
stage 0, which causes them to appear properly in kernel and
prologues.

It was also necessary to be more careful about boundary nodes
when iterating across successors in the dependence graph because
the loop exit branch is now a non-artificial successor to
instructions in the graph. In additional, schedules with physical
use/def pairs in the same cycle should be treated as creating an
invalid schedule because the scheduling logic doesn't respect
physical register dependence once scheduled to the same cycle.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D122672
2022-04-28 13:01:18 -07:00
Eli Friedman 2f497ec3a0 [ARM] Fix ARM backend to correctly use atomic expansion routines.
Without this patch, clang would generate calls to __sync_* routines on
targets where it does not make sense; we can't assume the routines exist
on unknown targets. Linux has special implementations of the routines
that work on old ARM targets; other targets have no such routines. In
general, atomics operations which aren't natively supported should go
through libatomic (__atomic_*) APIs, which can support arbitrary atomics
through locks.

ARM targets older than v6, where this patch makes a difference, are rare
in practice, but not completely extinct. See, for example, discussion on
D116088.

This also affects Cortex-M0, but I don't think __sync_* routines
actually exist in any Cortex-M0 libraries. So in practice this just
leads to a slightly different linker error for those cases, I think.

Mechanically, this patch does the following:

- Ensures we run atomic expansion unconditionally; it never makes sense to
completely skip it.
- Fixes getMaxAtomicSizeInBitsSupported() so it returns an appropriate
number on all ARM subtargets.
- Fixes shouldExpandAtomicRMWInIR() and shouldExpandAtomicCmpXchgInIR() to
correctly handle subtargets that don't have atomic instructions.

Differential Revision: https://reviews.llvm.org/D120026
2022-03-18 12:43:57 -07:00
Tomas Matheson 831ab35b2f [ARM][AArch64] generate subtarget feature flags
Reland of D120906 after sanitizer failures.

This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc.  ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.

Some naming inconsistencies have been fixed to allow this, and one unused
member removed.

This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.

Differential Revision: https://reviews.llvm.org/D120906
2022-03-18 16:07:00 +00:00
Tomas Matheson 62c481542e Revert "[ARM][AArch64] generate subtarget feature flags"
This reverts commit dd8b0fecb9.
2022-03-18 11:58:20 +00:00
Tomas Matheson dd8b0fecb9 [ARM][AArch64] generate subtarget feature flags
This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc.  ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.

Some naming inconsistencies have been fixed to allow this, and one unused
member removed.

This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.

Differential Revision: https://reviews.llvm.org/D120906
2022-03-18 11:48:20 +00:00
Mark Murray 3d7662142d [ARM] Undeprecate complex IT blocks
AArch32/Armv8A  introduced the performance deprecation of certain patterns
of IT instructions.  After some debate internal to ARM, this is now being
reverted; i.e. no IT instruction patterns are performance deprecated
anymore, as the perfomance degredation is not significant enough.

This reverts the following:

"ARMv8-A deprecates some uses of the T32 IT instruction. All uses of
IT that apply to instructions other than a single subsequent 16-bit
instruction from a restricted set are deprecated, as are explicit
references to the PC within that single 16-bit instruction. This permits
the non-deprecated forms of IT and subsequent instructions to be treated
as a single 32-bit conditional instruction."

The deprecation no longer applies, but the behaviour may be controlled
by the -arm-restrict-it and -arm-no-restrict-it command-line options,
with the latter being the default. No warnings about complex IT blocks
will be generated.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D118044
2022-02-07 15:47:53 +00:00
Ties Stuij 6b1e844b69 [ARM] Add Cortex-X1C Support for Clang and LLVM
This patch upstreams support for the Arm-v8 Cortex-X1C processor for AArch64 and
ARM.

For more information, see:
- https://community.arm.com/arm-community-blogs/b/announcements/posts/arm-cortex-x1c
- https://developer.arm.com/documentation/101968/0002/Functional-description/Technical-overview/Components

The following people contributed to this patch:
- Simon Tatham
- Ties Stuij

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D117202
2022-01-31 14:23:35 +00:00
Jim Lin da1cac7d19 [NFC] Remove duplicate include 2022-01-26 15:10:16 +08:00
serge-sans-paille 75e164f61d [llvm] Cleanup header dependencies in ADT and Support
The cleanup was manual, but assisted by "include-what-you-use". It consists in

1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
   is generally considered a good thing, but this may break downstream builds.
   I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
   modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
   as 3.

Notable changes:

- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h

You may need to add some of these headers in your compilation units, if needs be.

As an hint to the impact of the cleanup, running

clang++ -E  -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l

before: 8000919 lines
after:  7917500 lines

Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)

Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
2022-01-21 13:54:49 +01:00
Mubashar Ahmad 8e47b83ec9 [AArch64][ARM] Enablement of Cortex-A710 Support
Phabricator review: https://reviews.llvm.org/D113256
2021-11-18 10:58:05 +00:00
David Green 52e0cf9d61 [ARM] Enable subreg liveness
This enables subreg liveness in the arm backend when MVE is present,
which allows the register allocator to detect when subregister are
alive/dead, compared to only acting on full registers. This can helps
produce better code on MVE with the way MQPR registers are made up of
SPR registers, but is especially helpful for MQQPR and MQQQQPR
registers, where there are very few "registers" available and being able
to split them up into subregs can help produce much better code.

Differential Revision: https://reviews.llvm.org/D107642
2021-08-17 14:10:33 +01:00
Tim Northover d88f96dff3 ARM: support mandatory tail calls for tailcc & swifttailcc
This adds support for callee-pop conventions to the ARM backend so that it can
ensure a call marked "tail" is actually a tail call.
2021-05-28 11:10:51 +01:00
Mark Murray 5abfeccf10 [ARM][AArch64] Add Cortex-A78C Support for Clang and LLVM
This patch upstreams support for the Armv8-a Cortex-A78C
processor for AArch64 and ARM.

In detail:

Adding cortex-a78c as cpu option for aarch64 and arm targets in clang
Adding Cortex-A78C CPU name and ProcessorModel in llvm
Details of the CPU can be found here:
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a78c
2020-12-29 10:18:59 +00:00
David Penry a9f14cdc62 [ARM] Add bank conflict hazarding
Adds ARMBankConflictHazardRecognizer. This hazard recognizer
looks for a few situations where the same base pointer is used and
then checks whether the offsets lead to a bank conflict. Two
parameters are also added to permit overriding of the target
assumptions:

arm-data-bank-mask=<int> - Mask of bits which are to be checked for
conflicts.  If all these bits are equal in the offsets, there is a
conflict.
arm-assume-itcm-bankconflict=<bool> - Assume that there will be bank
conflicts on any loads to a constant pool.

This hazard recognizer is enabled for Cortex-M7, where the Technical
Reference Manual states that there are two DTCM banks banked using bit
2 and one ITCM bank.

Differential Revision: https://reviews.llvm.org/D93054
2020-12-23 14:00:59 +00:00
Mark Murray 2b6691894a [ARM][AArch64] Adding Neoverse N2 CPU support
Add support for the Neoverse N2 CPU to the ARM and AArch64 backends.

Differential Revision: https://reviews.llvm.org/D91695
2020-11-25 11:42:54 +00:00
Lucas Prates c2c2cc1360 [ARM][AArch64] Adding Neoverse V1 CPU support
Add support for the Neoverse V1 CPU to the ARM and AArch64 backends.

This is based on patches from Mark Murray and Victor Campos.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D90765
2020-11-09 13:15:40 +00:00
Craig Topper c7a0b2684f [X86][MC][Target] Initial backend support a tune CPU to support -mtune
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.

This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.

One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.

I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.

Differential Revision: https://reviews.llvm.org/D85165
2020-08-14 15:31:50 -07:00
Sam Parker 4f9f4b21e0 [ARM] Unrestrict Armv8-a IT when at minsize
IT blocks with more than one instruction were performance deprecated in Armv8
but that doesn't mean we should follow that advise when optimising for size.

Differential Revision: https://reviews.llvm.org/D85638
2020-08-10 14:59:53 +01:00
Luke Geeson 954db63cd1 [ARM] Add Cortex-A78 and Cortex-X1 Support for Clang and LLVM
This patch upstreams support for the Arm-v8 Cortex-A78 and Cortex-X1
processors for AArch64 and ARM.

In detail:
- Adding cortex-a78 and cortex-x1 as cpu options for aarch64 and arm targets in clang
- Adding Cortex-A78 and Cortex-X1 CPU names and ProcessorModels in llvm

details of the CPU can be found here:
https://www.arm.com/products/cortex-x

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a78

The following people contributed to this patch:
- Luke Geeson
- Mikhail Maltsev

Reviewers: t.p.northover, dmgreen

Reviewed By: dmgreen

Subscribers: dmgreen, kristof.beyls, hiraditya, danielkiss, cfe-commits,
llvm-commits, miyuki

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D83206
2020-07-10 18:24:11 +01:00
Luke Geeson 8bf99f1e6f [ARM] Add Cortex-A77 Support for Clang and LLVM
This patch upstreams support for the Arm-v8 Cortex-A77
processor for AArch64 and ARM.

In detail:
- Adding cortex-a77 as a cpu option for aarch64 and arm targets in clang
- Cortex-A77 CPU name and ProcessorModel in llvm

details of the CPU can be found here:
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77

and a similar submission to GCC can be found here:
e0664b7a63

The following people contributed to this patch:
- Luke Geeson
- Mikhail Maltsev

Reviewers: t.p.northover, dmgreen, ostannard, SjoerdMeijer

Reviewed By: dmgreen

Subscribers: dmgreen, kristof.beyls, hiraditya, danielkiss, cfe-commits,
llvm-commits, miyuki

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D82887
2020-07-03 13:00:54 +01:00
Benjamin Kramer adcd026838 Make llvm::StringRef to std::string conversions explicit.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.

This doesn't actually modify StringRef yet, I'll do that in a follow-up.
2020-01-28 23:25:25 +01:00
Carey Williams 76fd58d0fe Revert "[ARM] Allocatable Global Register Variables for ARM"
This reverts commit 2d739f98d8.
2019-11-29 17:01:05 +00:00
Anna Welker 2d739f98d8 [ARM] Allocatable Global Register Variables for ARM
Provides support for using r6-r11 as globally scoped
      register variables. This requires a -ffixed-rN flag
      in order to reserve rN against general allocation.

      If for a given GRV declaration the corresponding flag
      is not found, or the the register in question is the
      target's FP, we fail with a diagnostic.

      Differential Revision: https://reviews.llvm.org/D68862
2019-11-18 10:07:37 +00:00
Quentin Colombet de94cda81b [LiveInterval] Allow updating subranges with slightly out-dated IR
During register coalescing, we update the live-intervals on-the-fly.
To do that we are in this strange mode where the live-intervals can
be slightly out-of-sync (more precisely they are forward looking)
compared to what the IR actually represents.
This happens because the register coalescer only updates the IR when
it is done with updating the live-intervals and it has to do it this
way because updating the IR on-the-fly would actually clobber some
information on how the live-ranges that are being updated look like.

This is problematic for updates that rely on the IR to accurately
represents the state of the live-ranges. Right now, we have only
one of those: stripValuesNotDefiningMask.
To reconcile this need of out-of-sync IR, this patch introduces a
new argument to LiveInterval::refineSubRanges that allows the code
doing the live range updates to reason about how the code should
look like after the coalescer will have rewritten the registers.
Essentially this captures how a subregister index with be offseted
to match its position in a new register class.

E.g., let say we want to merge:
    V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>

We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
Put differently we align V2's sub3 with V1's sub1:
    V2: sub0 sub1 sub2 sub3
    V1: <offset>  sub0 sub1

This offset will look like a composed subregidx in the the class:
     V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
 =>  V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>

Now if we didn't rewrite the uses and def of V1, all the checks for V1
need to account for this offset to match what the live intervals intend
to capture.

Prior to this patch, we would fail to recognize the uses and def of V1
and would end up with machine verifier errors: No live segment at def.
This could lead to miscompile as we would drop some live-ranges and
thus, miss some interferences.

For this problem to trigger, we need to reach stripValuesNotDefiningMask
while having a mismatch between the IR and the live-ranges (i.e.,
we have to apply a subreg offset to the IR.)

This requires the following three conditions:
1. An update of overlapping subreg lanes: e.g., dsub0 == <ssub0, ssub1>
2. An update with Tuple registers with a possibility to coalesce the
   subreg index: e.g., v1.dsub_1 == v2.dsub_3
3. Subreg liveness enabled.

looking at the IR to decide what is alive and what is not, i.e., calling
stripValuesNotDefiningMask.
coalescer maintains for the live-ranges information.

None of the targets that currently use subreg liveness (i.e., the targets
that fulfill #3, Hexagon, AMDGPU, PowerPC, and SystemZ IIRC) expose #1 and
and #2, so this patch also artificial enables subreg liveness for ARM,
so that a nice test case can be attached.
2019-11-13 11:17:56 -08:00
David Green 7d9af03ff7 [Scheduling][ARM] Consistently enable PostRA Machine scheduling
In the ARM backend, for historical reasons we have only some targets
using Machine Scheduling. The rest use the old list scheduler as they
are using itinaries and the list scheduler seems to produce better code
(and not crash running out of register on v6m codes). So whether to use
the MIScheduler or not is checked at runtime from the subtarget
features.

This is fine, except for post-ra scheduling. Whether to use the old
post-ra list scheduler or the post-ra machine schedule is decided as the
pass manager is set up, in arms case from a newly constructed subtarget.
Under some situations, like LTO, this won't include the correct cpu so
can pick the wrong option. This can have a surprising effect on
performance.

To fix that, this patch overrides targetSchedulesPostRAScheduling and
addPreSched2 in the ARM backend, adding _both_ post-ra schedulers and
picking at runtime which to execute. To pick between the two I've had to
add a enablePostRAMachineScheduler() method that normally returns
enableMachineScheduler() && enablePostRAScheduler(), which can be
overridden to enable just one of PostRAMachineScheduler vs
PostRAScheduler.

Thanks to David Penry for the identifying this problem.

Differential Revision: https://reviews.llvm.org/D69775
2019-11-05 10:44:55 +00:00
Guillaume Chatelet 882c43d703 [Alignment][NFC] Use Align for TargetFrameLowering/Subtarget
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68993

llvm-svn: 375084
2019-10-17 07:49:39 +00:00
Guillaume Chatelet aff45e4b23 [LLVM][Alignment] Make functions using log of alignment explicit
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:

 - `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
 - `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
 - `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,

Reviewers: lattner, thegameg, courbet

Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D65945

llvm-svn: 371045
2019-09-05 10:00:22 +00:00
David Green a655393f17 [ARM] Add MVE beats vector cost model
The MVE architecture has the idea of "beats", where a vector instruction can be
executed over several ticks of the architecture. This adds a similar system
into the Arm backend cost model, multiplying the cost of all vector
instructions by a factor.

This factor essentially becomes the expected difference between scalar code
and vector code, on average. MVE Vector instructions can also overlap so the a
true cost of them is often lower. But equally scalar instructions can in some
situations be dual issued, or have other optimisations such as unrolling or
make use of dsp instructions. The default is chosen as 2. This should not
prevent vectorisation is a most cases (as the vector instructions will still be
doing at least 4 times the work), but it will help prevent over vectorising in
cases where the benefits are less likely.

This adds things so far to the obvious places in ARMTargetTransformInfo, and
updates a few related costs like not treating float instructions as cost 2 just
because they are floats.

Differential Revision: https://reviews.llvm.org/D66005

llvm-svn: 368733
2019-08-13 18:12:08 +00:00
Amara Emerson e14c91b71a [GlobalISel] Make the InstructionSelector instance non-const, allowing state to be maintained.
Currently we can't keep any state in the selector object that we get from
subtarget. As a result we have to plumb through all our variables through
multiple functions. This change makes it non-const and adds a virtual init()
method to allow further state to be captured for each target.

AArch64 makes use of this in this patch to cache a call to hasFnAttribute()
which is expensive to call, and is used on each selection of G_BRCOND.

Differential Revision: https://reviews.llvm.org/D65984

llvm-svn: 368652
2019-08-13 06:26:59 +00:00
Pablo Barrio 275954539d [ARM][AArch64] Support for Cortex-A65 & A65AE, Neoverse E1 & N1
Summary:
Add support for Cortex-A65, Cortex-A65AE, Neoverse E1 and Neoverse N1.
Neoverse E1 and Cortex-A65(&AE) only implement the AArch64 state of the
Arm architecture. Neoverse N1 implements both AArch32 and AArch64.

Cortex-A65:
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a65

Cortex-A65AE:
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a65ae

Neoverse E1:
https://developer.arm.com/ip-products/processors/neoverse/neoverse-e1

Neoverse N1:
https://developer.arm.com/ip-products/processors/neoverse/neoverse-n1

Patch by Diogo Sampaio and Pablo Barrio

Reviewers: samparker, LukeCheeseman, sbaranga, ostannard

Reviewed By: ostannard

Subscribers: ostannard, javed.absar, kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64406

llvm-svn: 367007
2019-07-25 10:59:45 +00:00
Oliver Stannard 830b20344b [ARM] Thumb2: favor R4-R7 over R12/LR in allocation order when opt for minsize
For Thumb2, we prefer low regs (costPerUse = 0) to allow narrow
encoding. However, current allocation order is like:
  R0-R3, R12, LR, R4-R11

As a result, a lot of instructs that use R12/LR will be wide instrs.

This patch changes the allocation order to:
  R0-R7, R12, LR, R8-R11
for thumb2 and -Osize.

In most cases, there is no extra push/pop instrs as they will be folded
into existing ones. There might be slight performance impact due to more
stack usage, so we only enable it when opt for min size.

https://reviews.llvm.org/D30324

llvm-svn: 365014
2019-07-03 09:58:52 +00:00
David Green 0582b22f10 [ARM] Don't use the Machine Scheduler for cortex-m at minsize
The new cortex-m schedule in rL360768 helps performance, but can increase the
amount of high-registers used. This, on average, ends up increasing the
codesize by a fair amount (because less instructions are converted from T2 to
T1). On cortex-m at -Oz, where we are quite size-paranoid, it is better to use
the existing DAG scheduler with the RegPressure scheduling preference (at least
until the issues around T2 vs T1 instructions can be improved).

I have also made sure that the Sched::RegPressure dag scheduler is always
chosen for MinSize.

The test shows one case where we increase the number of registers used.

Differential Revision: https://reviews.llvm.org/D61882

llvm-svn: 360769
2019-05-15 12:58:02 +00:00
Luke Cheeseman 59f77e7891 [AArch64] Add support for Cortex-A76 and Cortex-A76AE
- Add LLVM backend support for Cortex-A76 and Cortex-A76AE
- Documentation can be found at
  https://developer.arm.com/products/processors/cortex-a/cortex-a76

llvm-svn: 354788
2019-02-25 15:08:27 +00:00
Sam Parker 5b09834bc3 [ARM] Add OptMinSize to ARMSubtarget
In many places in the backend, we like to know whether we're
optimising for code size and this is performed by checking the
current machine function attributes. A subtarget is created on a
per-function basis, so it's possible to know when we're compiling for
code size on construction so record this in the new object.

Differential Revision: https://reviews.llvm.org/D57812

llvm-svn: 353501
2019-02-08 07:57:42 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
David Spickett ea605913be [ARM] Allow execute only code on Cortex-m23
The NoMovt feature prevents the use of MOVW/MOVT
instructions on Cortex-M23 for performance reasons.
These instructions are required for execute only code
so NoMovt should be disabled when that option is enabled.

Differential Revision: https://reviews.llvm.org/D52551

llvm-svn: 343302
2018-09-28 08:55:19 +00:00
Evandro Menezes 0600c365a8 [ARM] Adjust the cost model for Exynos
Tune `MaxInterleaveFactor` and `LdStMultipleTiming`and remove
`PartialUpdateClearance` for the Exynos processors.

llvm-svn: 342900
2018-09-24 16:35:14 +00:00
Evandro Menezes 8a6973d6ff [ARM] Adjust the feature set for Exynos
Fine tune the cost model for all Exynos processors.

llvm-svn: 342585
2018-09-19 19:51:29 +00:00
Evandro Menezes c62ab61173 [ARM] Refactor Exynos feature set (NFC)
Since all Exynos processors share the same feature set, fold them in the
implied fatures list for the subtarget.

llvm-svn: 342583
2018-09-19 19:43:23 +00:00
Evandro Menezes 9a92fe0c9e [ARM] Replace processor check with feature
Add new feature, `FeatureUseWideStrideVFP`, that replaces the need for a
processor check.  Otherwise, NFC.

llvm-svn: 339354
2018-08-09 16:13:24 +00:00
Tim Northover 097a3e3d95 ARM: deduplicate hard-float detection code. NFC.
ARMSubtarget had a copy/pasted block to determine whether the target was
hard-float, but it just delegated to triple features anyway so it's better at
the TargetMachine level.

llvm-svn: 337384
2018-07-18 12:36:25 +00:00
Matthias Braun a4852d2c19 X86/AArch64/ARM: Factor out common sincos_stret logic; NFCI
Note:
- X86ISelLowering: setLibcallName(SINCOS) was superfluous as
  InitLibcalls() already does it.
- ARMISelLowering: Setting libcallnames for sincos/sincosf seemed
  superfluous as in the darwin case it wouldn't be used while for all
  other cases InitLibcalls already does it.

llvm-svn: 321036
2017-12-18 23:19:42 +00:00
Matthias Braun f1caa2833f MachineFunction: Return reference from getFunction(); NFC
The Function can never be nullptr so we can return a reference.

llvm-svn: 320884
2017-12-15 22:22:58 +00:00
Michael Zolotukhin caf9ea6aa0 Remove redundant includes from lib/Target/ARM.
llvm-svn: 320635
2017-12-13 21:31:17 +00:00
Momchil Velikov dc86e1444d [ARM] Fix incorrect conversion of a tail call to an ordinary call
When we emit a tail call for Armv8-M, but then discover that the caller needs to
save/restore `LR`, we convert the tail call to an ordinary one, since restoring
`LR` takes extra instructions, which may negate the benefits of the tail
call. If the callee, however, takes stack arguments, this conversion is
incorrect, since nothing has been done to pass the stack arguments.

Thus the patch reverts https://reviews.llvm.org/rL294000

Also, we improve the instruction sequence for popping `LR` in the case when we
couldn't immediately find a scratch low register, but we can use as a temporary
one of the callee-saved low registers and restore `LR` before popping other
callee-saves.

Differential Revision: https://reviews.llvm.org/D39599

llvm-svn: 318143
2017-11-14 10:36:52 +00:00
Evgeniy Stepanov 76d5ac4906 [arm] Fix Unnecessary reloads from GOT.
Summary:
This fixes PR35221.
Use pseudo-instructions to let MachineCSE hoist global address computation.

Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D39871

llvm-svn: 318081
2017-11-13 20:45:38 +00:00