And thread DSE's ephemeral values to EarliestEscapeInfo.
This allows more precise analysis in DSEState::isReadClobber() via BatchAA.
Followup to D123162.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123342
The logic exposed by this patch via `llvm::DetermineUseCaptureKind` was
part of `llvm::PointerMayBeCaptured`. In the Attributor we want to keep
track of the work list items but still reuse the logic if a use might
capture a value. A follow up for the Attributor removes ~100 lines of
code and complexity while making future handling of simplified values
possible.
Differential Revision: https://reviews.llvm.org/D121272
Pull out an explicit check rather than relying on the fact that the callee operand is not a data operand. The only real value is it gives us a clear place to move the comment, and makes the code slightly more understandable.
This reverts the revert commit df56fc6ebb.
This version of the patch adjusts the location where the EarliestEscapes
cache is cleared when an instruction gets removed. The earliest escaping
instruction does not have to be a memory instruction.
It could be a ptrtoint instruction like in the added test
@earliest_escape_ptrtoint, which subsequently gets removed. We need to
invalidate the EarliestEscape entry referring to the ptrtoint when
deleting it.
This fixes the crash mentioned in
https://bugs.chromium.org/p/chromium/issues/detail?id=1252762#c6
At the moment, DSE only considers whether a pointer may be captured at
all in a function. This leads to cases where we fail to remove stores to
local objects because we do not check if they escape before potential
read-clobbers or after.
Doing context-sensitive escape queries in isReadClobber has been removed
a while ago in d1a1cce5b1 to save compile-time. See PR50220 for more
context.
This patch introduces a new capture tracker, which keeps track of the
'earliest' capture. An instruction A is considered earlier than instruction
B, if A dominates B. If 2 escapes do not dominate each other, the
terminator of the common dominator is chosen. If not all uses cannot be
analyzed, the earliest escape is set to the first instruction in the
function entry block.
If the query instruction dominates the earliest escape and is not in a
cycle, then pointer does not escape before the query instruction.
This patch uses this information when checking if a load of a loaded
underlying object may alias a write to a stack object. If the stack
object does not escape before the load, they do not alias.
I will share a follow-up patch to also use the information for call
instructions to fix PR50220.
In terms of compile-time, the impact is low in general,
NewPM-O3: +0.05%
NewPM-ReleaseThinLTO: +0.05%
NewPM-ReleaseLTO-g: +0.03
with the largest change being tramp3d-v4 (+0.30%)
http://llvm-compile-time-tracker.com/compare.php?from=1a3b3301d7aa9ab25a8bdf045c77298b087e3930&to=bc6c6899cae757c3480f4ad4874a76fc1eafb0be&stat=instructions
Compared to always computing the capture information on demand, we get
the following benefits from the caching:
NewPM-O3: -0.03%
NewPM-ReleaseThinLTO: -0.08%
NewPM-ReleaseLTO-g: -0.04%
The biggest speedup is tramp3d-v4 (-0.21%).
http://llvm-compile-time-tracker.com/compare.php?from=0b0c99177d1511469c633282ef67f20c851f58b1&to=bc6c6899cae757c3480f4ad4874a76fc1eafb0be&stat=instructions
Overall there is a small, but noticeable benefit from caching. I am not
entirely sure if the speedups warrant the extra complexity of caching.
The way the caching works also means that we might miss a few cases, as
it is less precise. Also, there may be a better way to cache things.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109844
isPotentiallyReachable can use LoopInfo to return earlier. This patch
allows passing an optional LI to PointerMayBeCapturedBefore. Used in
D109844.
Reviewed By: nikic, asbirlea
Differential Revision: https://reviews.llvm.org/D109978
This code was re-implementing the same-BB case of
isPotentiallyReachable(). Historically, this was done because
CaptureTracking used additional caching for local dominance
queries. Now that it is no longer needed, the code is effectively
the same as isPotentiallyReachable().
The only difference are extra checks for invoke/phis. These are
misleading checks related to dominance in the value availability
sense that are not relevant for control reachability. The invoke
check was correct but redundant in that invokes are always
terminators, so `I` could never come before the invoke. The phi
check is a matter of interpretation (should an earlier phi node be
considered reachable from a later phi node in the same block?)
but ultimately doesn't matter because phis don't capture anyway.
Reapply after adjusting the synchronized.m test case, where the
TODO is now resolved. The pointer is only captured on the exception
handling path.
-----
For the CapturesBefore tracker, it is sufficient to check that
I can not reach BeforeHere. This does not necessarily require
that BeforeHere dominates I, it can also occur if the capture
happens on an entirely disjoint path.
This change was previously accepted in D90688, but had to be
reverted due to large compile-time impact in some cases: It
increases the number of reachability queries that are performed.
After recent changes, the compile-time impact is largely mitigated,
so I'm reapplying this patch. The remaining compile-time impact
is largely proportional to changes in code-size.
This reverts commit 6b8b43e7af.
This causes clang test to fail (CodeGenObjC/synchronized.m).
Revert until I can figure out whether that's an expected change.
For the CapturesBefore tracker, it is sufficient to check that
I can not reach BeforeHere. This does not necessarily require
that BeforeHere dominates I, it can also occur if the capture
happens on an entirely disjoint path.
This change was previously accepted in D90688, but had to be
reverted due to large compile-time impact in some cases: It
increases the number of reachability queries that are performed.
After recent changes, the compile-time impact is largely mitigated,
so I'm reapplying this patch. The remaining compile-time impact
is largely proportional to changes in code-size.
Reachability queries are very expensive, and currently performed
for each instruction we look at, even though most of them will
not lead to a capture and are thus ultimately irrelevant. It is
more efficient to walk a few unnecessary instructions than to
perform unnecessary reachability queries.
Theoretically, this may produce worse results, because the additional
instructions considered may cause us to hit the use count limit
earlier. In practice, this does not appear to be a problem, e.g.
on test-suite O3 we report only one more captured-before with this
change, with no resulting codegen differences.
This makes PointerMayBeCapturedBefore() significantly cheaper in
practice, hopefully allowing it to be used in more places.
This patch is plumbing to support work towards the goal outlined in the recent llvm-dev post "[llvm-dev] RFC: Decomposing deref(N) into deref(N) + nofree".
The point of this change is purely to simplify iteration on other pieces on way to making the switch. Rebuilding with a change to Value.h is slow and painful, so I want to get the API change landed. Once that's done, I plan to more closely audit each caller, add the inference rules in their own patch, then post a patch with the langref changes and test diffs. The value of the command line flag is that we can exercise the inference logic in standalone patches without needing the whole switch ready to go just yet.
Differential Revision: https://reviews.llvm.org/D98908
If there are too many uses, we should directly return -- there's
no point in inspecting the remaining uses in the worklist, as we
have to conservatively assume a capture anyway. This also means
that tooManyUses() gets called exactly once, rather than
potentially many times.
This restores the behavior prior to e9832dfdf3,
where this was accidentally changed while moving the AddUses logic
into a closure, thus making the return a return from the closure
rather than the whole function.
If the same value is used multiple times in the same instruction,
CaptureTracking may end up reporting the wrong use as being captured,
and/or report the same use as being captured multiple times.
Make sure that all checks take the use operand number into account,
rather than performing unreliable comparisons against the used value.
I'm not sure whether this can cause any problems in practice, but
at least some capture trackers (ArgUsesTracker, AACaptureUseTracker)
do care about which call argument is captured.
CapturesBefore tracker has an overly restrictive dominates check when
the `BeforeHere` and the capture point are in different basic blocks.
All we need to check is that there is no path from the capture point
to `BeforeHere` (which is less stricter than the dominates check).
See added testcase in one of the users of CapturesBefore.
Reviewed-By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90688
Function isNonEscapingLocalObject is a static one within BasicAliasAnalysis.cpp.
It wraps around PointerMayBeCaptured of CaptureTracking, checking whether a pointer
is to a function-local object, which never escapes from the function.
Although at the moment, isNonEscapingLocalObject is used only by BasicAliasAnalysis,
its functionality can be used by other pass(es), one of which I will put up for review
very soon. Instead of copying the contents of this static function, I move it to llvm
scope, and place it amongst other functions with similar functionality in CaptureTracking.
The rationale for the location are:
- Pointer escape and pointer being captured are actually two sides of the same coin
- isNonEscapingLocalObject is wrapping around another function in CaptureTracking
Reviewed By: jdoerfert (Johannes Doerfert)
Differential Revision: https://reviews.llvm.org/D89465
The change in D78624 had a noticeable negative compile-time impact.
It seems that going through a function call for the MaxUsesToExplore
default is fairly expensive, at least if LLVM is not built with LTO.
This patch makes MaxUsesToExpore default to 0 and assigns the actual
default in the implementation instead. This recovers most of the
regression.
Differential Revision: https://reviews.llvm.org/D78734
The motivation is to be able to play with the option and change if it is required.
Reviewers: fedor.sergeev, apilipenko, rnk, jdoerfert
Reviewed By: fedor.sergeev
Subscribers: hiraditya, dantrushin, llvm-commits
Differential Revision: https://reviews.llvm.org/D78624
Essentially, fold OrderedBasicBlock into BasicBlock, and make it
auto-invalidate the instruction ordering when new instructions are
added. Notably, we don't need to invalidate it when removing
instructions, which is helpful when a pass mostly delete dead
instructions rather than transforming them.
The downside is that Instruction grows from 56 bytes to 64 bytes. The
resulting LLVM code is substantially simpler and automatically handles
invalidation, which makes me think that this is the right speed and size
tradeoff.
The important change is in SymbolTableTraitsImpl.h, where the numbering
is invalidated. Everything else should be straightforward.
We probably want to implement a fancier re-numbering scheme so that
local updates don't invalidate the ordering, but I plan for that to be
future work, maybe for someone else.
Reviewed By: lattner, vsk, fhahn, dexonsmith
Differential Revision: https://reviews.llvm.org/D51664
Summary:
CaptureTracker subclasses might have better dereferenceability
information which allows null pointer checks to be no-capturing.
The first user will be D59922.
Reviewers: sanjoy, hfinkel, aykevl, sstefan1, uenoku, xbolva00
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66371
llvm-svn: 369305
Summary:
Before we required the comparison against null to be "canonical", hence
null to be operand #1. This patch allows null to be in either operand,
similar to the handling of loaded globals that follows.
Reviewers: sanjoy, hfinkel, aykevl, sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66321
llvm-svn: 369158
Some uses of getArgumentAliasingToReturnedPointer and
isIntrinsicReturningPointerAliasingArgumentWithoutCapturing require the
calls/intrinsics to preserve the nullness of the argument.
For alias analysis, the nullness property does not really come into
play.
This patch explicitly sets it to true. In D61669, the alias analysis
uses will be switched to not require preserving nullness.
Reviewers: nlopes, efriedma, hfinkel, sanjoy, aqjune, jdoerfert
Reviewed By: jdoerfert
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64150
llvm-svn: 368993
Pointers that are in-bounds (either through dereferenceable_or_null or
thorough a getelementptr inbounds) cannot be captured with a comparison
against null. There is no way to construct a pointer that is still in
bounds but also NULL.
This helps safe languages that insert null checks before load/store
instructions. Without this patch, almost all pointers would be
considered captured even for simple loads. With this patch, an icmp with
null will not be seen as escaping as long as certain conditions are met.
There was a lot of discussion about this patch. See the Phabricator
thread for detals.
Differential Revision: https://reviews.llvm.org/D60047
llvm-svn: 362900
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
minted `CallBase` class instead of the `CallSite` wrapper.
This moves the largest interwoven collection of APIs that traffic in
`CallSite`s. While a handful of these could have been migrated with
a minorly more shallow migration by converting from a `CallSite` to
a `CallBase`, it hardly seemed worth it. Most of the APIs needed to
migrate together because of the complex interplay of AA APIs and the
fact that converting from a `CallBase` to a `CallSite` isn't free in its
current implementation.
Out of tree users of these APIs can fairly reliably migrate with some
combination of `.getInstruction()` on the `CallSite` instance and
casting the resulting pointer. The most generic form will look like `CS`
-> `cast_or_null<CallBase>(CS.getInstruction())` but in most cases there
is a more elegant migration. Hopefully, this migrates enough APIs for
users to fully move from `CallSite` to the base class. All of the
in-tree users were easily migrated in that fashion.
Thanks for the review from Saleem!
Differential Revision: https://reviews.llvm.org/D55641
llvm-svn: 350503
This is a follow up for rL347910. In the original patch I somehow forgot to pass
the limit from wrappers to the function which actually does the job.
llvm-svn: 349438
Currently CaptureTracker gives up if it encounters a value with more than 20
uses. The motivation for this cap is to keep it relatively cheap for
BasicAliasAnalysis use case, where the results can't be cached. Although, other
clients of CaptureTracker might be ok with higher cost. This patch introduces an
argument for PointerMayBeCaptured functions to specify the max number of uses to
explore. The motivation for this change is a downstream user of CaptureTracker,
but I believe upstream clients of CaptureTracker might also benefit from more
fine grained cap.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D55042
llvm-svn: 347910
Summary:
Patch for capture tracking broke
bootstrap of clang with -fstict-vtable-pointers
which resulted in debbugging nightmare. It was fixed
https://reviews.llvm.org/D46900 but as it turned
out, there were other parts like inliner (computing of
noalias metadata) that I found after bootstraping with enabled
assertions.
Reviewers: hfinkel, rsmith, chandlerc, amharc, kuhar
Subscribers: JDevlieghere, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D47088
llvm-svn: 333070
Summary:
A recent patch ([[ https://reviews.llvm.org/rL331587 | rL331587 ]]) to Capture Tracking taught it that the `launder_invariant_group` intrinsic captures its argument only by returning it. Unfortunately, BasicAA still considered every call instruction as a possible escape source and hence concluded that the result of a `launder_invariant_group` call cannot alias any local non-escaping value. This led to [[ https://bugs.llvm.org/show_bug.cgi?id=37458 | bug 37458 ]].
This patch updates the relevant check for escape sources in BasicAA.
Reviewers: Prazek, kuhar, rsmith, hfinkel, sanjoy, xbolva00
Reviewed By: hfinkel, xbolva00
Subscribers: JDevlieghere, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46900
llvm-svn: 332466
Summary:
launder.invariant.group has the same rules of capturing as
bitcast, gep, etc - the original value is not captured
if the returned pointer is not captured.
With this patch, we mark 40% more functions as noalias when compiling with -fstrict-vtable-pointers;
1078 vs 1778 (39.37%)
Reviewers: sanjoy, davide, nlewycky, majnemer, mehdi_amini
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D32673
llvm-svn: 331587
Summary:
The PointerMayBeCapturedBefore function's DomTree arg should be
const instead of non-const. There are no non-const uses of it
in the function.
llvm-svn: 330769
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
The memory location that corresponds to a volatile operation is very
special. They are observed by the machine in ways which we cannot
reason about.
Differential Revision: http://reviews.llvm.org/D20555
llvm-svn: 270879
Summary
When a non-escaping pointer is compared to a global value, the
comparison can be folded even if the corresponding malloc/allocation
call cannot be elided.
We need to make sure the global value is not null, since comparisons to
null cannot be folded.
In future, we should also handle cases when the the comparison
instruction dominates the pointer escape.
Reviewers: sanjoy
Subscribers s.egerton, llvm-commits
Differential Revision: http://reviews.llvm.org/D19549
llvm-svn: 268390