At the moment, the matrix support in CheckCXXCStyleCast (added in
D101696) breaks function-style constructor calls that take a
single matrix value, because it is treated as matrix cast.
Instead, unify the C++ matrix cast handling by moving the logic to
TryStaticCast and only handle the case where both types are matrix
types. Otherwise, fall back to the generic mis-match detection.
Suggested by @rjmccall
Reviewed By: SaurabhJha
Differential Revision: https://reviews.llvm.org/D103163
Fixes issues with vectors in reinterpret_cast in C++ for OpenCL
and adds tests to make sure they both pass without errors and
generate the correct code.
Fixes: PR47977
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D101519
This implements C-style type conversions for matrix types, as specified
in clang/docs/MatrixTypes.rst.
Fixes PR47141.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D99037
```
Warn when a function pointer is cast to an incompatible function
pointer. In a cast involving function types with a variable argument
list only the types of initial arguments that are provided are
considered. Any parameter of pointer-type matches any other
pointer-type. Any benign differences in integral types are ignored, like
int vs. long on ILP32 targets. Likewise type qualifiers are ignored. The
function type void (*) (void) is special and matches everything, which
can be used to suppress this warning. In a cast involving pointer to
member types this warning warns whenever the type cast is changing the
pointer to member type. This warning is enabled by -Wextra.
```
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D97831
There is no need to check for enabled pragma for core or optional core features,
thus this check is removed
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D97058
This patch allows C-style casting between fixed-size and scalable
vectors. This kind of cast was previously blocked by the compiler, but
it should be allowed.
Differential Revision: https://reviews.llvm.org/D91262
This is recommit of 6c8041aa0f, reverted in de044f7562 because of some
fails. Original commit message is below.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
When casting an enumerate with a fixed bool type the casting should use
an IntegralToBoolean instead of an IntegralCast as is required per Core
Issue 2338.
Fixes PR47055: Incorrect codegen for enum with bool underlying type
Differential Revision: https://reviews.llvm.org/D85612
This change squelches the warning for a cast from fixed to fixed point
conversions when -Wbad-function-cast is enabled.
Fixes:
cast from function call of type '_Fract' to non-matching type '_Fract'
[-Wbad-function-cast]
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D85157
Background:
-----------
There are two related argument types which can be sent into a diagnostic to
display the name of an entity: DeclarationName (ak_declarationname) or
NamedDecl* (ak_nameddecl) (there is also ak_identifierinfo for
IdentifierInfo*, but we are not concerned with it here).
A DeclarationName in a diagnostic will just be streamed to the output,
which will directly result in a call to DeclarationName::print.
A NamedDecl* in a diagnostic will also ultimately result in a call to
DeclarationName::print, but with two customisation points along the way:
The first customisation point is NamedDecl::getNameForDiagnostic which is
overloaded by FunctionDecl, ClassTemplateSpecializationDecl and
VarTemplateSpecializationDecl to print the template arguments, if any.
The second customisation point is NamedDecl::printName. By default it just
streams the stored DeclarationName into the output but it can be customised
to provide a user-friendly name for an entity. It is currently overloaded by
DecompositionDecl and MSGuidDecl.
What this patch does:
---------------------
For many diagnostics a DeclarationName is used instead of the NamedDecl*.
This bypasses the two customisation points mentioned above. This patches fix
this for diagnostics in Sema.cpp, SemaCast.cpp, SemaChecking.cpp, SemaDecl.cpp,
SemaDeclAttr.cpp, SemaDecl.cpp, SemaOverload.cpp and SemaStmt.cpp.
I have only modified diagnostics where I could construct a test-case which
demonstrates that the change is appropriate (either with this patch or the next
one).
Reviewed By: erichkeane, aaron.ballman
Differential Revision: https://reviews.llvm.org/D84656
`noderef` was failing to trigger warnings in some cases related to c++ style
casting. This patch addresses them.
Differential Revision: https://reviews.llvm.org/D77836
Summary:
This patch upstreams support for a new storage only bfloat16 C type.
This type is used to implement primitive support for bfloat16 data, in
line with the Bfloat16 extension of the Armv8.6-a architecture, as
detailed here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
The bfloat type, and its properties are specified in the Arm Architecture
Reference Manual:
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
In detail this patch:
- introduces an opaque, storage-only C-type __bf16, which introduces a new bfloat IR type.
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
The following people contributed to this patch:
- Luke Cheeseman
- Momchil Velikov
- Alexandros Lamprineas
- Luke Geeson
- Simon Tatham
- Ties Stuij
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, fpetrogalli
Reviewed By: SjoerdMeijer
Subscribers: labrinea, majnemer, asmith, dexonsmith, kristof.beyls, arphaman, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76077
This patch implements matrix index expressions
(matrix[RowIdx][ColumnIdx]).
It does so by introducing a new MatrixSubscriptExpr(Base, RowIdx, ColumnIdx).
MatrixSubscriptExprs are built in 2 steps in ActOnMatrixSubscriptExpr. First,
if the base of a subscript is of matrix type, we create a incomplete
MatrixSubscriptExpr(base, idx, nullptr). Second, if the base is an incomplete
MatrixSubscriptExpr, we create a complete
MatrixSubscriptExpr(base->getBase(), base->getRowIdx(), idx)
Similar to vector elements, it is not possible to take the address of
a MatrixSubscriptExpr.
For CodeGen, a new MatrixElt type is added to LValue, which is very
similar to VectorElt. The only difference is that we may need to cast
the type of the base from an array to a vector type when accessing it.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76791
This operator is intended for casting between
pointers to objects in different address spaces
and follows similar logic as const_cast in C++.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60193
Casts from an SVE type to itself aren't very useful, but they are
supposed to be valid, and could occur in things like macro expansions.
Such casts already work for C++ and are tested by sizeless-1.cpp.
This patch makes them work for C too.
Differential Revision: https://reviews.llvm.org/D76694
GCC does not warn on casts from pointers to enumerators, while clang
currently does: https://godbolt.org/z/3DFDVG
This causes a bunch of extra warnings in the Linux kernel, where
certain structs contain a void pointer to avoid using a gigantic
union for all of the various types of driver data, such as
versions.
Add a diagnostic that allows certain projects like the kernel to
disable the warning just for enums, which allows those projects to
keep full compatibility with GCC but keeps the intention of treating
casts to integers and enumerators the same by default so that other
projects have the opportunity to catch issues not noticed before (or
follow suite and disable the warning).
Link: https://github.com/ClangBuiltLinux/linux/issues/887
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D75758
The diagnostic added in D72231 also shows a diagnostic when casting to a
_Bool. This is unwanted. This patch removes the diagnostic for _Bool types.
Differential Revision: https://reviews.llvm.org/D74860
Converting a pointer to an integer whose result cannot represented in the
integer type is undefined behavior is C and prohibited in C++. C++ already
has a diagnostic when casting. This adds a diagnostic for C.
Since this diagnostic uses the range of the conversion it also modifies
int-to-pointer-cast diagnostic to use a range.
Fixes PR8718: No warning on casting between pointer and non-pointer-sized int
Differential Revision: https://reviews.llvm.org/D72231
Address space conversion changes pointer representation.
This commit disallows such conversions when they are not
legal i.e. for the nested pointers even with compatible
address spaces. Because the address space conversion in
the nested levels can't be generated to modify the pointers
correctly. The behavior implemented is as follows:
- Any implicit conversions of nested pointers with different
address spaces is rejected.
- Any conversion of address spaces in nested pointers in safe
casts (e.g. const_cast or static_cast) is rejected.
- Conversion in low level C-style or reinterpret_cast is accepted
but with a warning (this aligns with OpenCL C behavior).
Fixes PR39674
Differential Revision: https://reviews.llvm.org/D73360
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
implementing the resolution of CWG2352.
No functionality change, except that we now convert the referent of a
reference binding to the underlying type of the reference in more cases;
we used to happen to preserve the type sugar from the referent if the
only type change was in the cv-qualifiers.
This exposed a bug in how we generate code for trivial assignment
operators: if the type sugar (particularly the may_alias attribute)
got lost during reference binding, we'd use the "wrong" TBAA information
for the load during the assignment.
C-style cast) to an enumeration type.
We previously forgot to check this, and happened to get away with it
(with bad diagnostics) only because we misclassified incomplete
enumeration types as not being unscoped enumeration types. This also
fixes the misclassification.
This fixes an assertion failure in the case where an implicit conversion for a
function call involves an lvalue function conversion, and makes the AST for
initializations involving implicit lvalue function conversions more accurate.
Differential Revision: https://reviews.llvm.org/D66437
llvm-svn: 375313
same.
We were missing the lvalue-to-rvalue conversion entirely in this case,
and in fact still need the full CK_LValueToRValueBitCast conversion to
perform a load with no TBAA.
llvm-svn: 373874
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
This change sets missing cast kind correctly in the address
space conversion case.
Differential Revision: https://reviews.llvm.org/D62299
llvm-svn: 362409
The semantics for converting nested pointers between address
spaces are not very well defined. Some conversions which do not
really carry any meaning only produce warnings, and in some cases
warnings hide invalid conversions, such as 'global int*' to
'local float*'!
This patch changes the logic in checkPointerTypesForAssignment
and checkAddressSpaceCast to fail properly on implicit conversions
that should definitely not be permitted. We also dig deeper into the
pointer types and warn on explicit conversions where the address
space in a nested pointer changes, regardless of whether the address
space is compatible with the corresponding pointer nesting level
on the destination type.
Fixes PR39674!
Patch by ebevhan (Bevin Hansson)!
Differential Revision: https://reviews.llvm.org/D58236
llvm-svn: 360258
Because diagnostics and their notes are not connected at the API level,
if the error message for an overload is emitted, then the overload
candidates are completed - if a diagnostic is emitted during that work,
the notes related to overload candidates would be attached to the latter
diagnostic, not the original error. Sort of worse, if the latter
diagnostic was disabled, the notes are disabled.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D61357
llvm-svn: 359854
This change adds a new diagnostic for mismatching address spaces
to be used for C++ casts (only enabled in C style cast for now,
the rest will follow!).
The change extends C-style cast rules to account for address spaces.
It also adds a separate function for address space cast checking that
can be used to map from a separate address space cast operator
addrspace_cast (to be added as a follow up patch).
Note, that after this change clang will no longer allows arbitrary
address space conversions in reinterpret_casts because they can lead
to accidental errors. The implicit safe conversions would still be
allowed.
Differential Revision: https://reviews.llvm.org/D58346
llvm-svn: 355609
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756