This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Implements the ThinLTO summary support for memprof related metadata.
This includes support for the assembly format, and for building the
summary from IR during ModuleSummaryAnalysis.
To reduce space in both the bitcode format and the in memory index,
we do 2 things:
1. We keep a single vector of all uniq stack id hashes, and record the
index into this vector in the callsite and allocation memprof
summaries.
2. When building the combined index during the LTO link, the callsite
and allocation memprof summaries are only kept on the FunctionSummary
of the prevailing copy.
Differential Revision: https://reviews.llvm.org/D135714
The TableGen implementation was using a homegrown implementation of
FunctionModRefInfo. This switches it to use MemoryEffects instead.
This makes the code simpler, and will allow exposing the full
representational power of MemoryEffects in the future. Among other
things, this will allow us to map IntrHasSideEffects to an
inaccessiblemem readwrite, rather than just ignoring it entirely
in most cases.
To avoid layering issues, this moves the ModRef.h header from IR
to Support, so that it can be included in the TableGen layer.
Differential Revision: https://reviews.llvm.org/D137641
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
This switches everything to use the memory attribute proposed in
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
The old argmemonly, inaccessiblememonly and inaccessiblemem_or_argmemonly
attributes are dropped. The readnone, readonly and writeonly attributes
are restricted to parameters only.
The old attributes are auto-upgraded both in bitcode and IR.
The bitcode upgrade is a policy requirement that has to be retained
indefinitely. The IR upgrade is mainly there so it's not necessary
to update all tests using memory attributes in this patch, which
is already large enough. We could drop that part after migrating
tests, or retain it longer term, to make it easier to import IR
from older LLVM versions.
High-level Function/CallBase APIs like doesNotAccessMemory() or
setDoesNotAccessMemory() are mapped transparently to the memory
attribute. Code that directly manipulates attributes (e.g. via
AttributeList) on the other hand needs to switch to working with
the memory attribute instead.
Differential Revision: https://reviews.llvm.org/D135780
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
This implements IR and bitcode support for the memory attribute,
as specified in https://reviews.llvm.org/D135597.
The new attribute is not used for anything yet (and as such, the
old memory attributes are unaffected).
Differential Revision: https://reviews.llvm.org/D135592
Extracted from D135714 which adds summary support for MemProf. We will
need a 3rd tuple member in the ValueIdToValueInfoMap, this patch makes a
number of NFC changes to the existing clients of that map to reflect the
conversion of pair to tuple.
This patch renames FuncletPadInst::getNumArgOperands to arg_size for
consistency with CallBase, where getNumArgOperands was removed in
favor of arg_size in commit 3e1c787b31
Differential Revision: https://reviews.llvm.org/D136048
Disallow this meaningless combination. Doing so simplifies analysis
of LLVM code w.r.t t DLL storage-class, and prevents mistakes with
DLL storage class.
- Change the assembler to reject DLL storage class on symbols with
local linkage.
- Change the bitcode reader to clear the DLL Storage class when the
linkage is local for auto-upgrading
- Update LangRef.
There is an existing restriction on non-default visibility and local
linkage which this is modelled on.
Differential Review: https://reviews.llvm.org/D134784
As discussed in [0], this diff adds the `skipprofile` attribute to
prevent the function from being profiled while allowing profiled
functions to be inlined into it. The `noprofile` attribute remains
unchanged.
The `noprofile` attribute is used for functions where it is
dangerous to add instrumentation to while the `skipprofile` attribute is
used to reduce code size or performance overhead.
[0] https://discourse.llvm.org/t/why-does-the-noprofile-attribute-restrict-inlining/64108
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D130807
This allows the construct to be shared between different backends. However, it
still remains illegal to use TypedPointerType in LLVM IR--the type is intended
to remain an auxiliary type, not a real LLVM type. So no support is provided for
LLVM-C, nor bitcode, nor LLVM assembly (besides the bare minimum needed to make
Type->dump() work properly).
Reviewed By: beanz, nikic, aeubanks
Differential Revision: https://reviews.llvm.org/D130592
Turning on opaque pointers has uncovered an issue with WPD where we currently pattern match away `assume(type.test)` in WPD so that a later LTT doesn't resolve the type test to undef and introduce an `assume(false)`. The pattern matching can fail in cases where we transform two `assume(type.test)`s into `assume(phi(type.test.1, type.test.2))`.
Currently we create `assume(type.test)` for all virtual calls that might be devirtualized. This is to support `-Wl,--lto-whole-program-visibility`.
To prevent this, all virtual calls that may not be in the same LTO module instead use a new `llvm.public.type.test` intrinsic in place of the `llvm.type.test`. Then when we know if `-Wl,--lto-whole-program-visibility` is passed or not, we can either replace all `llvm.public.type.test` with `llvm.type.test`, or replace all `llvm.public.type.test` with `true`. This prevents WPD from trying to pattern match away `assume(type.test)` for public virtual calls when failing the pattern matching will result in miscompiles.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D128955
llvm::sort is beneficial even when we use the iterator-based overload,
since it can optionally shuffle the elements (to detect
non-determinism). However llvm::sort is not usable everywhere, for
example, in compiler-rt.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D130406
Following some recent discussions, this changes the representation
of callbrs in IR. The current blockaddress arguments are replaced
with `!` label constraints that refer directly to callbr indirect
destinations:
; Before:
%res = callbr i8* asm "", "=r,r,i"(i8* %x, i8* blockaddress(@test8, %foo))
to label %asm.fallthrough [label %foo]
; After:
%res = callbr i8* asm "", "=r,r,!i"(i8* %x)
to label %asm.fallthrough [label %foo]
The benefit of this is that we can easily update the successors of
a callbr, without having to worry about also updating blockaddress
references. This should allow us to remove some limitations:
* Allow unrolling/peeling/rotation of callbr, or any other
clone-based optimizations
(https://github.com/llvm/llvm-project/issues/41834)
* Allow duplicate successors
(https://github.com/llvm/llvm-project/issues/45248)
This is just the IR representation change though, I will follow up
with patches to remove limtations in various transformation passes
that are no longer needed.
Differential Revision: https://reviews.llvm.org/D129288
For MTE globals, we should have clang emit the attribute for all GV's
that it creates, and then use that in the upcoming AArch64 global
tagging IR pass. We need a positive attribute for this sanitizer (rather
than implicit sanitization of all globals) because it needs to interact
with other parts of LLVM, including:
1. Suppressing certain global optimisations (like merging),
2. Emitting extra directives by the ASM writer, and
3. Putting extra information in the symbol table entries.
While this does technically make the LLVM IR / bitcode format
non-backwards-compatible, nobody should have used this attribute yet,
because it's a no-op.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D128950
(Reapply after revert in e9ce1a5880 due to
Fuchsia test failures. Removed changes in lib/ExecutionEngine/ other
than error categories, to be checked in more detail and reapplied
separately.)
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
D128820 stopped creating div/rem constant expressions by default;
this patch removes support for them entirely.
The getUDiv(), getExactUDiv(), getSDiv(), getExactSDiv(), getURem()
and getSRem() on ConstantExpr are removed, and ConstantExpr::get()
now only accepts binary operators for which
ConstantExpr::isSupportedBinOp() returns true. Uses of these methods
may be replaced either by corresponding IRBuilder methods, or
ConstantFoldBinaryOpOperands (if a constant result is required).
On the C API side, LLVMConstUDiv, LLVMConstExactUDiv, LLVMConstSDiv,
LLVMConstExactSDiv, LLVMConstURem and LLVMConstSRem are removed and
corresponding LLVMBuild methods should be used.
Importantly, this also means that constant expressions can no longer
trap! This patch still keeps the canTrap() method to minimize diff --
I plan to drop it in a separate NFC patch.
Differential Revision: https://reviews.llvm.org/D129148
This removes the insertvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
This is very similar to the extractvalue removal from D125795.
insertvalue is also not supported in bitcode, so no auto-ugprade
is necessary.
ConstantExpr::getInsertValue() can be replaced with
IRBuilder::CreateInsertValue() or ConstantFoldInsertValueInstruction(),
depending on whether a constant result is required (with the latter
being fallible).
The ConstantExpr::hasIndices() and ConstantExpr::getIndices()
methods also go away here, because there are no longer any constant
expressions with indices.
Differential Revision: https://reviews.llvm.org/D128719
Restore the autoupgrade from bitcast to ptrtoint+inttoptr, which
was lost as part of D127729.
This fixes the backwards compatibility issue noted in:
https://reviews.llvm.org/D127729#inline-1236519
This implements an autoupgrade from constant expressions to
instructions, which is needed for
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
The basic approach is that constant expressions (CST_CODE_CE_*
records) now initially only create a BitcodeConstant value that
holds opcode, flags and operands IDs. Then, when the value actually
gets used, it can be converted either into a constant expression
(if that expression type is still supported) or into a sequence of
instructions. As currently all expressions are still supported,
-expand-constant-exprs is added for testing purposes, to force
expansion.
PHI nodes require special handling, because the constant expression
needs to be evaluated on the incoming edge. We do this by putting
it into a temporary block and then wiring it up appropriately
afterwards (for non-critical edges, we could also move the
instructions into the predecessor).
This also removes the need for the forward referenced constants
machinery, as the BitcodeConstants only hold value IDs. At the
point where the value is actually materialized, no forward
references are needed anymore.
Differential Revision: https://reviews.llvm.org/D127729