When following a case of a switch instruction is guaranteed to lead to
UB, we can safely break these edges and redirect those cases into a newly
created unreachable block. As result, CFG will become simpler and we can
remove some of Phi inputs to make further analyzes easier.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109428
Reviewed By: lebedev.ri
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
This makes some tests in vector-reductions-logical.ll more stable when
applying D108837.
The cost of branching is higher when vector ops are involved due to
potential SLP transformations.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108935
In particular, it couldn't handle cases where lookup table constant
expressions involved bitcasts. This does not seem to come up
frequently in C++, but comes up reasonably often in Rust via
`#[derive(Debug)]`.
Originally reported by pcwalton.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109565
I can't seem to wrap my head around the proper fix here,
we should be fine without this requirement, iff we can form this form,
but the naive attempt (https://reviews.llvm.org/D106317) has failed.
So just to unblock the release, put up a restriction.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51125
This improvement adds "assume" after removal of branch basing on UB in successor block.
Consider the following example:
```
pred:
x = ...
cond = x > 10
br cond, bb, other.succ
bb:
phi [nullptr, pred], ... // other possible preds
load(phi) // UB if we came from pred
other.succ:
// here we know that x <= 10, but this knowledge is lost
// after the branch is turned to unconditional unless we
// preserve it with assume.
```
If we remove the branch basing on knowledge about UB in a successor block,
then the fact that x <= 10 is other.succ might be lost if this condition is
not inferrable from any dominating condition. To preserve this knowledge, we
can add assume intrinsic with (possibly inverted) branch condition.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109054
Reviewed By: lebedev.ri
The only thing that function should do as per it's semantic,
is to ensure that the switch's default is a block consisting only of
an `unreachable` terminator.
So let's just create such a block and update switch's default
to point to it. There should be no need for all this weird dance
around predecessors/successors.
This reverts commit 9934a5b2ed.
This patch may cause miscompiles because it missed a constraint
as shown in the examples from:
https://llvm.org/PR51531
It might changed the condition of a branch into a constant,
so we should restart and constant-fold terminator,
instead of continuing with the tautological "conditional" branch.
This fixes the issue reported at https://reviews.llvm.org/rGf30a7dff8a5b32919951dcbf92e4a9d56c4679ff
We really shouldn't deal with a conditional branch that can be trivially
constant-folded into an unconditional branch.
Indeed, barring failure to trigger BB reprocessing, that should be true,
so let's assert as much, and hope the assertion never fires.
If it does, we have a bug to fix.
Mainly, i want to add an assertion that `SimplifyCFGOpt::simplifyCondBranch()`
doesn't get asked to deal with non-unconditional branches,
and if i do that, then said assertion fires on existing tests,
and this is what prevents it from firing.
Avoid stack overflow errors on systems with small stack sizes
by removing recursion in FoldCondBranchOnPHI.
This is a simple change as the recursion was only iteratively
calling the function again on the same arguments.
Ideally this would be compiled to a tail call, but there is
no guarantee.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107803
In SimplifyCFG we may simplify the CFG by speculatively executing
certain stores, when they are preceded by a store to the same
location. This patch allows such speculation also when the stores are
similarly preceded by a load.
In order for this transformation to be correct we need to ensure that
the memory location is writable and the store in the new location does
not introduce a data race.
Local objects (created by an `alloca` instruction) are always
writable, so once we are past a read from a location it is valid to
also write to that same location.
Seeing just a load does not guarantee absence of a data race (unlike
if we see a store) - the load may still be part of a race, just not
causing undefined behaviour
(cf. https://llvm.org/docs/Atomics.html#optimization-outside-atomic).
In the original program, a data race might have been prevented by the
condition, but once we move the store outside the condition, we must
be sure a data race wasn't possible anyway, no matter what the
condition evaluates to.
One way to be sure that a local object is never concurrently
read/written is check that its address never escapes the function.
Hence this transformation is restricted to local, non-escaping
objects.
Reviewed By: nikic, lebedev.ri
Differential Revision: https://reviews.llvm.org/D107281
This transform has been restricted to legal types since
https://reviews.llvm.org/rG65df808f6254617b9eee931d00e95d900610b660
in 2012.
This is particularly restrictive on RISCV64 which only has i64
as a legal integer type. i32 is a very common type in code
generated from C, but we won't form a lookup table with it.
This also effects other common types like i8/i16 types on ARM,
AArch64, RISCV, etc.
This patch proposes to allow power of 2 types larger than 8 bit, if
they will fit in the largest legal integer type in DataLayout.
These types are common in C code so generally well handled in
the backends.
We could probably do this for other types like i24 and rely on
alignment and padding to allow the backend to use a single wider
load. This isn't my main concern right now and it will need more
tests.
We could also allow larger types up to some limit and let the
backend split into multiple loads, but we need to define that
limit. It's also not my main concern right now.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107233
When hoisting/moving calls to locations, we strip unknown metadata. Such calls are usually marked `speculatable`, i.e. they are guaranteed to not cause undefined behaviour when run anywhere. So, we should strip attributes that can cause immediate undefined behaviour if those attributes are not valid in the context where the call is moved to.
This patch introduces such an API and uses it in relevant passes. See
updated tests.
Fix for PR50744.
Reviewed By: nikic, jdoerfert, lebedev.ri
Differential Revision: https://reviews.llvm.org/D104641
Nowadays, simplifycfg pass already tail-merges all the ret blocks together
before doing anything, and it should not increase the count of ret's,
so this is dead code.
Proposed alternative to D105338.
This is ugly, but short-term I think it's the best way forward: first,
let's formalize the hacks into a coherent model. Then we can consider
extensions of that model (we could have different flavors of volatile
with different rules).
Differential Revision: https://reviews.llvm.org/D106309
isSafeToSpeculateStore() looks for a preceding store to the same
location to make sure that introducing a new store of the same
value is safe. It currently bails on intervening mayHaveSideEffect()
instructions. However, I believe just checking mayWriteToMemory()
is sufficient there -- we just need to make sure that we know which
value was stored, we don't care if we can unwind in the meantime.
While looking into this, I started having some doubts about the
correctness of the transform with regard to thread safety. While
we don't try to hoist non-simple stores, I believe we also need
to make sure that the preceding store is simple as well. Otherwise
we could introduce a spurious non-atomic write after an atomic write
-- under our memory model this would result in a subsequent undef
atomic read, even if the second write stores the same value as the
first.
Example: https://alive2.llvm.org/ce/z/q_3YAL
Differential Revision: https://reviews.llvm.org/D106742
If the branch isn't `unpredictable`, and it is predicted to *not* branch
to the block we are considering speculatively executing,
then it seems counter-productive to execute the code that is predicted not to be executed.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D106650
Otherwise e.g. the FoldTwoEntryPHINode() has to do a lot of legwork
to re-deduce what is the dominant block (i.e. for which block
is this branch the terminator).
This function is called when some predecessor of an empty return block
ends with a conditional branch, with both successors being empty ret blocks.
Now, because of the way SimplifyCFG works, it might happen to simplify
one of the blocks in a way that makes a conditional branch
into an unconditional one, since it's destinations are now identical,
but it might not have actually simplified said conditional branch
into an unconditional one yet.
So, we have to check that ourselves first,
especially now that SimplifyCFG aggressively tail-merges
all ret and resume blocks.
Even if it was an unconditional branch already,
`SimplifyCFGOpt::simplifyReturn()` doesn't call `FoldReturnIntoUncondBranch()`
by default.
The logical (select) form of and/or will now be a source of problems.
We don't really account for it's inverted form, yet it exists,
and presumably we should treat it just like non-inverted form:
https://alive2.llvm.org/ce/z/BU9AXkhttps://bugs.llvm.org/show_bug.cgi?id=51149 reports a reportedly-serious
perf regression that will hopefully be mitigated by this.
We need to make sure that the value types are the same. Otherwise
we both may not have the necessary dereferenceability implication,
nor can we directly form the desired select pattern.
Without opaque pointers this is enforced implicitly through the
pointer comparison.
`SinkCommonCodeFromPredecessors()` doesn't itself ensure that duplicate PHI nodes aren't created.
I suppose, we could teach it to do that on-the-fly (& account for the already-existing PHI nodes,
& adjust costmodel), the diff will be bigger than this.
The alternative is to schedule a new EarlyCSE pass invocation somewhere later in the pipeline.
Clearly, we don't have any EarlyCSE runs in module optimization passline, so this pattern isn't cleaned up...
That would perhaps better, but it will again have some compile time impact.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D106010
This patch fixes the problem of SimplifyBranchOnICmpChain that occurs
when extra values are Undef or poison.
Suppose the %mode is 51 and the %Cond is poison, and let's look at the
case below.
```
%A = icmp ne i32 %mode, 0
%B = icmp ne i32 %mode, 51
%C = select i1 %A, i1 %B, i1 false
%D = select i1 %C, i1 %Cond, i1 false
br i1 %D, label %T, label %F
=>
br i1 %Cond, label %switch.early.test, label %F
switch.early.test:
switch i32 %mode, label %T [
i32 51, label %F
i32 0, label %F
]
```
incorrectness: https://alive2.llvm.org/ce/z/BWScX
Code before transformation will not raise UB because %C and %D is false,
and it will not use %Cond. But after transformation, %Cond is being used
immediately, and it will raise UB.
This problem can be solved by adding freeze instruction.
correctness: https://alive2.llvm.org/ce/z/x9x4oY
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D104569
This reverts commit 52aeacfbf5.
There isn't full agreement on a path forward yet, but there is agreement that
this shouldn't land as-is. See discussion on https://reviews.llvm.org/D105338
Also reverts unreviewed "[clang] Improve `-Wnull-dereference` diag to be more in-line with reality"
This reverts commit f4877c78c0.
And all the related changes to tests:
This reverts commit 9a0152799f.
This reverts commit 3f7c9cc274.
This reverts commit 329f8197ef.
This reverts commit aa9f58cc2c.
This reverts commit 2df37d5ddd.
This reverts commit a72a441812.
This reverts commit 4e413e1621,
which landed almost 10 months ago under premise that the original behavior
didn't match reality and was breaking users, even though it was correct as per
the LangRef. But the LangRef change still hasn't appeared, which might suggest
that the affected parties aren't really worried about this problem.
Please refer to discussion in:
* https://reviews.llvm.org/D87399 (`Revert "[InstCombine] erase instructions leading up to unreachable"`)
* https://reviews.llvm.org/D53184 (`[LangRef] Clarify semantics of volatile operations.`)
* https://reviews.llvm.org/D87149 (`[InstCombine] erase instructions leading up to unreachable`)
clang has `-Wnull-dereference` which will diagnose the obvious cases
of null dereference, it was adjusted in f4877c78c0,
but it will only catch the cases where the pointer is a null literal,
it will not catch the cases where an arbitrary store is expected to trap.
Differential Revision: https://reviews.llvm.org/D105338
This replaces the current ad-hoc implementation,
by syncing the code from InstCombine's implementation in `InstCombinerImpl::visitUnreachableInst()`,
with one exception that here in SimplifyCFG we are allowed to remove EH instructions.
Effectively, this now allows SimplifyCFG to remove calls (iff they won't throw and will return),
arithmetic/logic operations, etc.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D105374
Mimics similar change for InstCombine:
ce192ced2b / D104602
All these uses are in blocks that aren't reachable from function's entry,
and said blocks are removed by SimplifyCFG itself,
so we can't really test this change.
Somewhat related to D105338.
While it is up for discussion whether or not volatile store traps,
so far there has been no complaints that volatile load/cmpxchg/atomicrmw also may trap.
And even if simplifycfg currently concervatively believes that to be the case,
instcombine does not: https://godbolt.org/z/5vhv4K5b8
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D105343