This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
On x86 and AArch, SIMD instructions encode all of the scheduling information in the instruction
itself. For example, VADD.I16 q0, q1, q2 is a neon instruction that operates on 16-bit integer
elements stored in 128-bit Q registers, which leads to eight 16-bit lanes in parallel. This kind
of information impacts how the instruction takes to execute and what dependencies this may cause.
On RISCV however, the data that impacts scheduling is encoded in CSR registers such as vtype or
vl, in addition with the instruction itself. But MCA does not track or use the data in these
registers. This patch fixes this problem by introducing Instruments into MCA.
* Replace `CodeRegions` with `AnalysisRegions`
* Add `Instrument` and `InstrumentManager`
* Add `InstrumentRegions`
* Add RISCV Instrument and `InstrumentManager`
* Parse `Instruments` in driver
* Use instruments to override schedule class
* RISCV use lmul instrument to override schedule class
* Fix unit tests to pass empty instruments
* Add -ignore-im clopt to disable this change
A prior version of this patch was commited in 5e82ee5373. 2323a4ee61 reverted
that change because the unit test files caused build errors. The change with fixes
were committed in b88b8307bf but reverted once again e8e92c8313 due to more
build errors.
This commit adds the prior changes and fixes the build error.
Differential Revision: https://reviews.llvm.org/D137440
On x86 and AArch, SIMD instructions encode all of the scheduling information in the instruction
itself. For example, VADD.I16 q0, q1, q2 is a neon instruction that operates on 16-bit integer
elements stored in 128-bit Q registers, which leads to eight 16-bit lanes in parallel. This kind
of information impacts how the instruction takes to execute and what dependencies this may cause.
On RISCV however, the data that impacts scheduling is encoded in CSR registers such as vtype or
vl, in addition with the instruction itself. But MCA does not track or use the data in these
registers. This patch fixes this problem by introducing Instruments into MCA.
* Replace `CodeRegions` with `AnalysisRegions`
* Add `Instrument` and `InstrumentManager`
* Add `InstrumentRegions`
* Add RISCV Instrument and `InstrumentManager`
* Parse `Instruments` in driver
* Use instruments to override schedule class
* RISCV use lmul instrument to override schedule class
* Fix unit tests to pass empty instruments
* Add -ignore-im clopt to disable this change
A prior version of this patch was commited in. It was reverted in
5e82ee5373. 2323a4ee61 reverted
that change because the unit test files caused build errors. This commit adds the original changes
and the fixed test files.
Differential Revision: https://reviews.llvm.org/D137440
On x86 and AArch, SIMD instructions encode all of the scheduling information in the instruction
itself. For example, VADD.I16 q0, q1, q2 is a neon instruction that operates on 16-bit integer
elements stored in 128-bit Q registers, which leads to eight 16-bit lanes in parallel. This kind
of information impacts how the instruction takes to execute and what dependencies this may cause.
On RISCV however, the data that impacts scheduling is encoded in CSR registers such as vtype or
vl, in addition with the instruction itself. But MCA does not track or use the data in these
registers. This patch fixes this problem by introducing Instruments into MCA.
* Replace `CodeRegions` with `AnalysisRegions`
* Add `Instrument` and `InstrumentManager`
* Add `InstrumentRegions`
* Add RISCV Instrument and `InstrumentManager`
* Parse `Instruments` in driver
* Use instruments to override schedule class
* RISCV use lmul instrument to override schedule class
* Fix unit tests to pass empty instruments
* Add -ignore-im clopt to disable this change
Differential Revision: https://reviews.llvm.org/D137440
A simple sed doing these substitutions:
- `${LLVM_BINARY_DIR}/(\$\{CMAKE_CFG_INTDIR}/)?lib(${LLVM_LIBDIR_SUFFIX})?\>` -> `${LLVM_LIBRARY_DIR}`
- `${LLVM_BINARY_DIR}/(\$\{CMAKE_CFG_INTDIR}/)?bin\>` -> `${LLVM_TOOLS_BINARY_DIR}`
where `\>` means "word boundary".
The only manual modifications were reverting changes in
- `compiler-rt/cmake/Modules/CompilerRTUtils.cmake
- `runtimes/CMakeLists.txt`
because these were "entry points" where we wanted to tread carefully not not introduce a "loop" which would end with an undefined variable being expanded to nothing.
This hopefully increases readability overall, and also decreases the usages of `LLVM_LIBDIR_SUFFIX`, preparing us for D130586.
Reviewed By: sebastian-ne
Differential Revision: https://reviews.llvm.org/D132316
This patch introduces a new feature that allows InstrBuilder to reuse
mca::Instruction recycled from IncrementalSourceMgr. This significantly
reduces the memory footprint.
Note that we're only recycling instructions that have static InstrDesc
and no variadic operands.
Differential Revision: https://reviews.llvm.org/D127084
The new resumable mca::Pipeline capability introduced in this patch
allows users to save the current state of pipeline and resume from the
very checkpoint.
It is better (but not require) to use with the new IncrementalSourceMgr,
where users can add mca::Instruction incrementally rather than having a
fixed number of instructions ahead-of-time.
Note that we're using unit tests to test these new features. Because
integrating them into the `llvm-mca` tool will make too many churns.
Differential Revision: https://reviews.llvm.org/D127083