This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Since CallDescriptions can only be matched against CallEvents that are created
during symbolic execution, it was not possible to use it in syntactic-only
contexts. For example, even though InnerPointerChecker can check with its set of
CallDescriptions whether a function call is interested during analysis, its
unable to check without hassle whether a non-analyzer piece of code also calls
such a function.
The patch adds the ability to use CallDescriptions in syntactic contexts as
well. While we already have that in Signature, we still want to leverage the
ability to use dynamic information when we have it (function pointers, for
example). This could be done with Signature as well (StdLibraryFunctionsChecker
does it), but it makes it even less of a drop-in replacement.
Differential Revision: https://reviews.llvm.org/D119004
`CallDescriptions` for builtin functions relaxes the match rules
somewhat, so that the `CallDescription` will match for calls that have
some prefix or suffix. This was achieved by doing a `StringRef::contains()`.
However, this is somewhat problematic for builtins that are substrings
of each other.
Consider the following:
`CallDescription{ builtin, "memcpy"}` will match for
`__builtin_wmemcpy()` calls, which is unfortunate.
This patch addresses/works around the issue by checking if the
characters around the function's name are not part of the 'name'
semantically. In other words, to accept a match for `"memcpy"` the call
should not have alphanumeric (`[a-zA-Z]`) characters around the 'match'.
So, `CallDescription{ builtin, "memcpy"}` will not match on:
- `__builtin_wmemcpy: there is a `w` alphanumeric character before the match.
- `__builtin_memcpyFOoBar_inline`: there is a `F` character after the match.
- `__builtin_memcpyX_inline`: there is an `X` character after the match.
But it will still match for:
- `memcpy`: exact match
- `__builtin_memcpy`: there is an _ before the match
- `__builtin_memcpy_inline`: there is an _ after the match
- `memcpy_inline_builtinFooBar`: there is an _ after the match
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D118388
`CallDescriptions` deserve its own translation unit.
This patch simply moves the corresponding parts.
Also includes the `CallDescription.h` where it's necessary.
Reviewed By: martong, xazax.hun, Szelethus
Differential Revision: https://reviews.llvm.org/D113587
Fallback to stringification and string comparison if we cannot compare
the `IdentifierInfo`s, which is the case for C++ overloaded operators,
constructors, destructors, etc.
Examples:
{ "std", "basic_string", "basic_string", 2} // match the 2 param std::string constructor
{ "std", "basic_string", "~basic_string" } // match the std::string destructor
{ "aaa", "bbb", "operator int" } // matches the struct bbb conversion operator to int
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111535
This NFC change accomplishes three things:
1) Splits up the single unittest into reasonable segments.
2) Extends the test infra using a template to select the AST-node
from which it is supposed to construct a `CallEvent`.
3) Adds a *lot* of different tests, documenting the current
capabilities of the `CallDescription`. The corresponding tests are
marked with `FIXME`s, where the current behavior should be different.
Both `CXXMemberCallExpr` and `CXXOperatorCallExpr` are derived from
`CallExpr`, so they are matched by using the default template parameter.
On the other hand, `CXXConstructExpr` is not derived from `CallExpr`.
In case we want to match for them, we need to pass the type explicitly
to the `CallDescriptionAction`.
About destructors:
They have no AST-node, but they are generated in the CFG machinery in
the analyzer. Thus, to be able to match against them, we would need to
construct a CFG and walk on that instead of simply walking the AST.
I'm also relaxing the `EXPECT`ation in the
`CallDescriptionConsumer::performTest()`, to check the `LookupResult`
only if we matched for the `CallDescription`.
This is necessary to allow tests in which we expect *no* matches at all.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111794
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
When matching C standard library functions in the checker, it's easy to forget
that they are often implemented as macros that are expanded to builtins.
Such builtins would have a different name, so matching the callee identifier
would fail, or may sometimes have more arguments than expected, so matching
the exact number of arguments would fail, but this is fine as long as we have
all the arguments that we need in their respective places.
This patch adds a set of flags to the CallDescription class so that to handle
various special matching rules, and adds the first flag into this set,
which enables a more fuzzy matching for functions that
may be implemented as compiler builtins.
Differential Revision: https://reviews.llvm.org/D62556
llvm-svn: 364867
It encapsulates the procedure of figuring out whether a call event
corresponds to a function that's modeled by a checker.
Checker developers no longer need to worry about performance of
lookups into their own custom maps.
Add unittests - which finally test CallDescription itself as well.
Differential Revision: https://reviews.llvm.org/D62441
llvm-svn: 364866