This revision fixes typos where there are 2 consecutive words which are
duplicated. There should be no code changes in this revision (only
changes to comments and docs). Do let me know if there are any
undesirable changes in this revision. Thanks.
Removes a bunch of obsolete methods in favor of a single one returning
an ArrayRef of TemplateArgument.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D136602
The diagnostics engine is very smart about being passed a NamedDecl to
print as part of a diagnostic; it gets the "right" form of the name,
quotes it properly, etc. However, the result of using an unnamed tag
declaration was to print '' instead of anything useful.
This patch causes us to print the same information we'd have gotten if
we had printed the type of the declaration rather than the name of it,
as that's the most relevant information we can display.
Differential Revision: https://reviews.llvm.org/D134813
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
C++20 non-type template parameter prints `MyType<{{116, 104, 105, 115}}>` when the code is as simple as `MyType<"this">`. This patch prints `MyType<{"this"}>`, with one layer of braces preserved for the intermediate structural type to trigger CTAD.
`StringLiteral` handles this case, but `StringLiteral` inside `APValue` code looks like a circular dependency. The proposed patch implements a cheap strategy to emit string literals in diagnostic messages only when they are readable and fall back to integer sequences.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D115031
This reverts commit cc56c66f27.
Fixed a bad assertion, the target of a UsingShadowDecl must not have
*local* qualifiers, but it can be a typedef whose underlying type is qualified.
Currently there's no way to find the UsingDecl that a typeloc found its
underlying type through. Compare to DeclRefExpr::getFoundDecl().
Design decisions:
- a sugar type, as there are many contexts this type of use may appear in
- UsingType is a leaf like TypedefType, the underlying type has no TypeLoc
- not unified with UnresolvedUsingType: a single name is appealing,
but being sometimes-sugar is often fiddly.
- not unified with TypedefType: the UsingShadowDecl is not a TypedefNameDecl or
even a TypeDecl, and users think of these differently.
- does not cover other rarer aliases like objc @compatibility_alias,
in order to be have a concrete API that's easy to understand.
- implicitly desugared by the hasDeclaration ASTMatcher, to avoid
breaking existing patterns and following the precedent of ElaboratedType.
Scope:
- This does not cover types associated with template names introduced by
using declarations. A future patch should introduce a sugar TemplateName
variant for this. (CTAD deduced types fall under this)
- There are enough AST matchers to fix the in-tree clang-tidy tests and
probably any other matchers, though more may be useful later.
Caveats:
- This changes a fairly common pattern in the AST people may depend on matching.
Previously, typeLoc(loc(recordType())) matched whether a struct was
referred to by its original scope or introduced via using-decl.
Now, the using-decl case is not matched, and needs a separate matcher.
This is similar to the case of typedefs but nevertheless both adds
complexity and breaks existing code.
Differential Revision: https://reviews.llvm.org/D114251
This avoids an unnecessary copy required by 'return OS.str()', allowing
instead for NRVO or implicit move. The .str() call (which flushes the
stream) is no longer required since 65b13610a5,
which made raw_string_ostream unbuffered by default.
Differential Revision: https://reviews.llvm.org/D115374
Add desugared type to hover when the desugared type and the pretty-printed type are different.
```c++
template<typename T>
struct TestHover {
using Type = T;
};
int main() {
TestHover<int>::Type a;
}
```
```
variable a
Type: TestHover<int>::Type (aka int)
```
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D114522
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
`OS << ND->getDeclName();` is equivalent to `OS << ND->getNameAsString();`
without the extra temporary string.
This is not quite a NFC since two uses of `getNameAsString` in a
diagnostic are replaced, which results in the named entity being
quoted with additional "'"s (ie: 'var' instead of var).
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Allow sending address spaces into diagnostics to simplify and improve
error reporting. Improved wording of diagnostics for address spaces
in overloading.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71111
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Qualifiers can now be streamed into the DiagnosticEngine using
regular << operator. If Qualifiers are empty 'unqualified' will
be printed in the diagnostic otherwise regular qual syntax is
used.
Differential Revision: https://reviews.llvm.org/D56198
llvm-svn: 350386
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
When the type being diffed is a type alias, and the orginal type is not a
templated type, then there will be no unsugared TemplateSpecializationType.
When this happens, exit early from the constructor. Also add assertions to
the other iterator accessor to prevent the iterator from being used.
llvm-svn: 277797
Fixes https://llvm.org/bugs/show_bug.cgi?id=27129 which is crash involving type
aliases and template type diffing. Template arguments for type aliases and
template arguments for the underlying desugared type may not have one-to-one
relations, which could mess us the attempt to get more information from the
desugared type. For type aliases, ignore the iterator over the desugared type.
llvm-svn: 264940
When all the arguments of a template are elided, print "A<...>" instead of
"A<[2 * ...]>". Also remove comment fragment that means nothing.
llvm-svn: 259445
1) Print qualifiers for templates with zero arguments
2) Add a few more tests for the template type diffing refactoring.
Specifically, PR24587 has been fixed and has a test case from
http://reviews.llvm.org/D15384
3) Adds asserts to check the DiffTree is in correct state when moving nodes
4) Rename the field FromType and ToType since it is heavily used within
member functions.
llvm-svn: 257870
Remove an old assertion that does not hold. It is possible for a template
argument to be a declaration in one instantiation and an integer in another.
Create two new diff kinds for these (decl vs int and int vs decl).
llvm-svn: 257869
Save the integer type when diffing integers in template type diffing. When
integers are different sizes, print out the type along with the integer value.
Also with the type information, print true and false instead of 1 and 0 for
boolean values.
llvm-svn: 257861
If available, use the canonical template argument to fill in information for
template type diffing instead of attempting to special case and evaluate Expr's
for the value. Since those are the values used in template instantiation,
we don't have to worry about difference between our evaluator and theirs. Also
move the nullptr template arguments from DiffKind::Expression to
DiffKind::Declaration and allow DiffKind::Declaration to set an Expr. The only
effect that should result is that a named nullptr will show up as
'ptr aka nullptr' in diagnostics.
llvm-svn: 257853
Modify the TSTiterator to have two internal iterators, which will walk
the provided sugared type and the desugared type. This will provide better
access to the template argument information. No functional changes.
llvm-svn: 257838