Fix PR32831 (Try Again): 'this' capture while instantiating generic lambda call operator specialization

When computing the appropriate cv-qualifiers for the 'this' capture, we have to examine each enclosing lambda - but when using the FunctionScopeInfo stack we have to ensure that the lambda below (outer) is the decl-context of the closure-class of the current lambda.

https://bugs.llvm.org/show_bug.cgi?id=32831

This patch was initially committed here: https://reviews.llvm.org/rL301735
Then reverted here: https://reviews.llvm.org/rL301916

The issue with the original patch was a failure to check that the closure type has been created within the LambdaScopeInfo before querying its DeclContext - instead of just assuming it has (silly!).  A reduced example such as this highlights the problem:
  struct X {
     int data;
     auto foo() { return [] { return [] -> decltype(data) { return 0; }; }; }
  };

When 'data' within decltype(data) tries to determine the type of 'this', none of the LambdaScopeInfo's have their closure types created at that point.

 

llvm-svn: 301972
This commit is contained in:
Faisal Vali 2017-05-02 20:56:34 +00:00
parent c7695a8e45
commit 999f27e373
2 changed files with 338 additions and 244 deletions

View File

@ -901,17 +901,36 @@ static QualType adjustCVQualifiersForCXXThisWithinLambda(
// capturing lamdbda's call operator.
//
// The issue is that we cannot rely entirely on the FunctionScopeInfo stack
// since ScopeInfos are pushed on during parsing and treetransforming. But
// since a generic lambda's call operator can be instantiated anywhere (even
// end of the TU) we need to be able to examine its enclosing lambdas and so
// we use the DeclContext to get a hold of the closure-class and query it for
// capture information. The reason we don't just resort to always using the
// DeclContext chain is that it is only mature for lambda expressions
// enclosing generic lambda's call operators that are being instantiated.
// Since the FunctionScopeInfo stack is representative of the lexical
// nesting of the lambda expressions during initial parsing (and is the best
// place for querying information about captures about lambdas that are
// partially processed) and perhaps during instantiation of function templates
// that contain lambda expressions that need to be transformed BUT not
// necessarily during instantiation of a nested generic lambda's function call
// operator (which might even be instantiated at the end of the TU) - at which
// time the DeclContext tree is mature enough to query capture information
// reliably - we use a two pronged approach to walk through all the lexically
// enclosing lambda expressions:
//
// 1) Climb down the FunctionScopeInfo stack as long as each item represents
// a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
// enclosed by the call-operator of the LSI below it on the stack (while
// tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
// the stack represents the innermost lambda.
//
// 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
// represents a lambda's call operator. If it does, we must be instantiating
// a generic lambda's call operator (represented by the Current LSI, and
// should be the only scenario where an inconsistency between the LSI and the
// DeclContext should occur), so climb out the DeclContexts if they
// represent lambdas, while querying the corresponding closure types
// regarding capture information.
// 1) Climb down the function scope info stack.
for (int I = FunctionScopes.size();
I-- && isa<LambdaScopeInfo>(FunctionScopes[I]);
I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
(!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
@ -927,11 +946,17 @@ static QualType adjustCVQualifiersForCXXThisWithinLambda(
return ASTCtx.getPointerType(ClassType);
}
}
// We've run out of ScopeInfos but check if CurDC is a lambda (which can
// happen during instantiation of generic lambdas)
// 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
// happen during instantiation of its nested generic lambda call operator)
if (isLambdaCallOperator(CurDC)) {
assert(CurLSI);
assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator));
assert(CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo");
assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
"While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a "
"lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator");
assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
auto IsThisCaptured =

View File

@ -1,231 +1,300 @@
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -emit-llvm-only %s
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -fdelayed-template-parsing %s -DDELAYED_TEMPLATE_PARSING
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -fms-extensions %s -DMS_EXTENSIONS
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -fdelayed-template-parsing -fms-extensions %s -DMS_EXTENSIONS -DDELAYED_TEMPLATE_PARSING
template<class, class> constexpr bool is_same = false;
template<class T> constexpr bool is_same<T, T> = true;
namespace test_star_this {
namespace ns1 {
class A {
int x = 345;
auto foo() {
(void) [*this, this] { }; //expected-error{{'this' can appear only once}}
(void) [this] { ++x; };
(void) [*this] { ++x; }; //expected-error{{read-only variable}}
(void) [*this] () mutable { ++x; };
(void) [=] { return x; };
(void) [&, this] { return x; };
(void) [=, *this] { return x; };
(void) [&, *this] { return x; };
}
};
} // end ns1
namespace ns2 {
class B {
B(const B&) = delete; //expected-note{{deleted here}}
int *x = (int *) 456;
void foo() {
(void)[this] { return x; };
(void)[*this] { return x; }; //expected-error{{call to deleted}}
}
};
} // end ns2
namespace ns3 {
class B {
B(const B&) = delete; //expected-note2{{deleted here}}
int *x = (int *) 456;
public:
template<class T = int>
void foo() {
(void)[this] { return x; };
(void)[*this] { return x; }; //expected-error2{{call to deleted}}
}
B() = default;
} b;
B *c = (b.foo(), nullptr); //expected-note{{in instantiation}}
} // end ns3
namespace ns4 {
template<class U>
class B {
B(const B&) = delete; //expected-note{{deleted here}}
double d = 3.14;
public:
template<class T = int>
auto foo() {
const auto &L = [*this] (auto a) mutable { //expected-error{{call to deleted}}
d += a;
return [this] (auto b) { return d +=b; };
};
}
B() = default;
};
void main() {
B<int*> b;
b.foo(); //expected-note{{in instantiation}}
} // end main
} // end ns4
namespace ns5 {
struct X {
double d = 3.14;
X(const volatile X&);
void foo() {
}
void foo() const { //expected-note{{const}}
auto L = [*this] () mutable {
static_assert(is_same<decltype(this), X*>);
++d;
auto M = [this] {
static_assert(is_same<decltype(this), X*>);
++d;
auto N = [] {
static_assert(is_same<decltype(this), X*>);
};
};
};
auto L1 = [*this] {
static_assert(is_same<decltype(this), const X*>);
auto M = [this] () mutable {
static_assert(is_same<decltype(this), const X*>);
auto N = [] {
static_assert(is_same<decltype(this), const X*>);
};
};
auto M2 = [*this] () mutable {
static_assert(is_same<decltype(this), X*>);
auto N = [] {
static_assert(is_same<decltype(this), X*>);
};
};
};
auto GL1 = [*this] (auto a) {
static_assert(is_same<decltype(this), const X*>);
auto M = [this] (auto b) mutable {
static_assert(is_same<decltype(this), const X*>);
auto N = [] (auto c) {
static_assert(is_same<decltype(this), const X*>);
};
return N;
};
auto M2 = [*this] (auto a) mutable {
static_assert(is_same<decltype(this), X*>);
auto N = [] (auto b) {
static_assert(is_same<decltype(this), X*>);
};
return N;
};
return [=](auto a) mutable { M(a)(a); M2(a)(a); };
};
GL1("abc")("abc");
auto L2 = [this] () mutable {
static_assert(is_same<decltype(this), const X*>);
++d; //expected-error{{cannot assign}}
};
auto GL = [*this] (auto a) mutable {
static_assert(is_same<decltype(this), X*>);
++d;
auto M = [this] (auto b) {
static_assert(is_same<decltype(this), X*>);
++d;
auto N = [] (auto c) {
static_assert(is_same<decltype(this), X*>);
};
N(3.14);
};
M("abc");
};
GL(3.14);
}
void foo() volatile const {
auto L = [this] () {
static_assert(is_same<decltype(this), const volatile X*>);
auto M = [*this] () mutable {
static_assert(is_same<decltype(this), X*>);
auto N = [this] {
static_assert(is_same<decltype(this), X*>);
auto M = [] {
static_assert(is_same<decltype(this), X*>);
};
};
auto N2 = [*this] {
static_assert(is_same<decltype(this), const X*>);
};
};
auto M2 = [*this] () {
static_assert(is_same<decltype(this), const X*>);
auto N = [this] {
static_assert(is_same<decltype(this), const X*>);
};
};
};
}
};
} //end ns5
namespace ns6 {
struct X {
double d;
auto foo() const {
auto L = [*this] () mutable {
auto M = [=] (auto a) {
auto N = [this] {
++d;
static_assert(is_same<decltype(this), X*>);
auto O = [*this] {
static_assert(is_same<decltype(this), const X*>);
};
};
N();
static_assert(is_same<decltype(this), X*>);
};
return M;
};
return L;
}
};
int main() {
auto L = X{}.foo();
auto M = L();
M(3.14);
}
} // end ns6
namespace ns7 {
struct X {
double d;
X();
X(const X&);
X(X&) = delete;
auto foo() const {
//OK - the object used to initialize our capture is a const object and so prefers the non-deleted ctor.
const auto &&L = [*this] { };
}
};
int main() {
X x;
x.foo();
}
} // end ns7
} //end ns test_star_this
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -emit-llvm-only %s
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -fdelayed-template-parsing %s -DDELAYED_TEMPLATE_PARSING
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -fms-extensions %s -DMS_EXTENSIONS
// RUN: %clang_cc1 -std=c++1z -verify -fsyntax-only -fblocks -fdelayed-template-parsing -fms-extensions %s -DMS_EXTENSIONS -DDELAYED_TEMPLATE_PARSING
template <class, class>
constexpr bool is_same = false;
template <class T>
constexpr bool is_same<T, T> = true;
namespace test_star_this {
namespace ns1 {
class A {
int x = 345;
auto foo() {
(void)[ *this, this ]{}; //expected-error{{'this' can appear only once}}
(void)[this] { ++x; };
(void)[*this] { ++x; }; //expected-error{{read-only variable}}
(void)[*this]() mutable { ++x; };
(void)[=] { return x; };
(void)[&, this ] { return x; };
(void)[ =, *this ] { return x; };
(void)[&, *this ] { return x; };
}
};
} // namespace ns1
namespace ns2 {
class B {
B(const B &) = delete; //expected-note{{deleted here}}
int *x = (int *)456;
void foo() {
(void)[this] { return x; };
(void)[*this] { return x; }; //expected-error{{call to deleted}}
}
};
} // namespace ns2
namespace ns3 {
class B {
B(const B &) = delete; //expected-note2{{deleted here}}
int *x = (int *)456;
public:
template <class T = int>
void foo() {
(void)[this] { return x; };
(void)[*this] { return x; }; //expected-error2{{call to deleted}}
}
B() = default;
} b;
B *c = (b.foo(), nullptr); //expected-note{{in instantiation}}
} // namespace ns3
namespace ns4 {
template <class U>
class B {
B(const B &) = delete; //expected-note{{deleted here}}
double d = 3.14;
public:
template <class T = int>
auto foo() {
const auto &L = [*this](auto a) mutable { //expected-error{{call to deleted}}
d += a;
return [this](auto b) { return d += b; };
};
}
B() = default;
};
void main() {
B<int *> b;
b.foo(); //expected-note{{in instantiation}}
} // end main
} // namespace ns4
namespace ns5 {
struct X {
double d = 3.14;
X(const volatile X &);
void foo() {
}
void foo() const { //expected-note{{const}}
auto L = [*this]() mutable {
static_assert(is_same<decltype(this), X *>);
++d;
auto M = [this] {
static_assert(is_same<decltype(this), X *>);
++d;
auto N = [] {
static_assert(is_same<decltype(this), X *>);
};
};
};
auto L1 = [*this] {
static_assert(is_same<decltype(this), const X *>);
auto M = [this]() mutable {
static_assert(is_same<decltype(this), const X *>);
auto N = [] {
static_assert(is_same<decltype(this), const X *>);
};
};
auto M2 = [*this]() mutable {
static_assert(is_same<decltype(this), X *>);
auto N = [] {
static_assert(is_same<decltype(this), X *>);
};
};
};
auto GL1 = [*this](auto a) {
static_assert(is_same<decltype(this), const X *>);
auto M = [this](auto b) mutable {
static_assert(is_same<decltype(this), const X *>);
auto N = [](auto c) {
static_assert(is_same<decltype(this), const X *>);
};
return N;
};
auto M2 = [*this](auto a) mutable {
static_assert(is_same<decltype(this), X *>);
auto N = [](auto b) {
static_assert(is_same<decltype(this), X *>);
};
return N;
};
return [=](auto a) mutable { M(a)(a); M2(a)(a); };
};
GL1("abc")
("abc");
auto L2 = [this]() mutable {
static_assert(is_same<decltype(this), const X *>);
++d; //expected-error{{cannot assign}}
};
auto GL = [*this](auto a) mutable {
static_assert(is_same<decltype(this), X *>);
++d;
auto M = [this](auto b) {
static_assert(is_same<decltype(this), X *>);
++d;
auto N = [](auto c) {
static_assert(is_same<decltype(this), X *>);
};
N(3.14);
};
M("abc");
};
GL(3.14);
}
void foo() volatile const {
auto L = [this]() {
static_assert(is_same<decltype(this), const volatile X *>);
auto M = [*this]() mutable {
static_assert(is_same<decltype(this), X *>);
auto N = [this] {
static_assert(is_same<decltype(this), X *>);
auto M = [] {
static_assert(is_same<decltype(this), X *>);
};
};
auto N2 = [*this] {
static_assert(is_same<decltype(this), const X *>);
};
};
auto M2 = [*this]() {
static_assert(is_same<decltype(this), const X *>);
auto N = [this] {
static_assert(is_same<decltype(this), const X *>);
};
};
};
}
};
} // namespace ns5
namespace ns6 {
struct X {
double d;
auto foo() const {
auto L = [*this]() mutable {
auto M = [=](auto a) {
auto N = [this] {
++d;
static_assert(is_same<decltype(this), X *>);
auto O = [*this] {
static_assert(is_same<decltype(this), const X *>);
};
};
N();
static_assert(is_same<decltype(this), X *>);
};
return M;
};
return L;
}
};
int main() {
auto L = X{}.foo();
auto M = L();
M(3.14);
}
} // namespace ns6
namespace ns7 {
struct X {
double d;
X();
X(const X &);
X(X &) = delete;
auto foo() const {
//OK - the object used to initialize our capture is a const object and so prefers the non-deleted ctor.
const auto &&L = [*this]{};
}
};
int main() {
X x;
x.foo();
}
} // namespace ns7
} // namespace test_star_this
namespace PR32831 {
// https://bugs.llvm.org/show_bug.cgi?id=32831
namespace ns1 {
template <typename Func>
void fun_template(Func func) {
(void)[&]() {
func(0);
};
}
class A {
void member_foo() {
(void)[this] {
(void)[this] {
fun_template(
[this](auto X) {
auto L = [this](auto Y) { member_foo(); };
L(5);
});
fun_template(
[this](auto) { member_foo(); });
};
};
}
};
} // namespace ns1
namespace ns2 {
struct B {
int data = 0;
template <class F>
void mem2(F f) {
(void)[&](auto f) {
(void)[&] { f(this->data); };
}
(f);
}
};
class A {
void member_foo() {
(void)[this] {
(void)[this] {
B{}.mem2(
[this](auto X) {
auto L = [this](auto Y) { member_foo(); };
L(5);
});
B{}.mem2(
[this](auto) { member_foo(); });
};
};
}
int data = 0;
auto m2() {
return [this] { return [] () -> decltype(data){ return 0; }; };
}
auto m3() {
return [] { return [] () -> decltype(data){ return 0; }; };
}
};
} // namespace ns2
} // namespace PR32831