mirror of https://github.com/Jittor/JittorLLMs
48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
from fastapi import FastAPI, Request
|
|
import argparse
|
|
import models
|
|
import uvicorn, json, datetime
|
|
import torch
|
|
|
|
DEVICE = "cuda"
|
|
DEVICE_ID = "0"
|
|
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
|
|
|
app = FastAPI()
|
|
|
|
@app.post("/")
|
|
async def create_item(request: Request):
|
|
global model
|
|
json_post_raw = await request.json()
|
|
json_post = json.dumps(json_post_raw)
|
|
json_post_list = json.loads(json_post)
|
|
prompt = json_post_list.get('prompt')
|
|
# history = json_post_list.get('history')
|
|
# max_length = json_post_list.get('max_length')
|
|
# top_p = json_post_list.get('top_p')
|
|
# temperature = json_post_list.get('temperature')
|
|
output = model.run(prompt)
|
|
if isinstance(output, tuple):
|
|
response, history = output
|
|
else:
|
|
response = output
|
|
history = []
|
|
now = datetime.datetime.now()
|
|
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
|
answer = {
|
|
"response": response,
|
|
"history": history,
|
|
"status": 200,
|
|
"time": time
|
|
}
|
|
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
|
print(log)
|
|
return answer
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("model", choices=models.availabel_models)
|
|
args = parser.parse_args()
|
|
model = models.get_model(args)
|
|
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1) |