JGAN/models/pixelda/pixelda.py

260 lines
9.6 KiB
Python

import argparse
import os
import numpy as np
import math
import mnistm
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
import jittor as jt
from jittor import init
from jittor import nn
jt.flags.use_cuda = 1
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--n_residual_blocks", type=int, default=6, help="number of residual blocks in generator")
parser.add_argument("--latent_dim", type=int, default=10, help="dimensionality of the noise input")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes in the dataset")
parser.add_argument("--sample_interval", type=int, default=300, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)
# Calculate output of image discriminator (PatchGAN)
patch = int(opt.img_size / 2 ** 4)
patch = (1, patch, patch)
def weights_init_normal(m):
classname = m.__class__.__name__
if (classname.find('Conv') != (- 1)):
init.gauss_(m.weight, mean=0.0, std=0.02)
elif (classname.find('BatchNorm') != (- 1)):
init.gauss_(m.weight, mean=1.0, std=0.02)
init.constant_(m.bias, value=0.0)
class ResidualBlock(nn.Module):
def __init__(self, in_features=64, out_features=64):
super(ResidualBlock, self).__init__()
self.block = nn.Sequential(nn.Conv(in_features, in_features, 3, stride=1, padding=1), nn.BatchNorm(in_features), nn.ReLU(), nn.Conv(in_features, in_features, 3, stride=1, padding=1), nn.BatchNorm(in_features))
def execute(self, x):
return (x + self.block(x))
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc = nn.Linear(opt.latent_dim, (opt.channels * (opt.img_size ** 2)))
self.l1 = nn.Sequential(nn.Conv((opt.channels * 2), 64, 3, stride=1, padding=1), nn.ReLU())
resblocks = []
for _ in range(opt.n_residual_blocks):
resblocks.append(ResidualBlock())
self.resblocks = nn.Sequential(*resblocks)
self.l2 = nn.Sequential(nn.Conv(64, opt.channels, 3, stride=1, padding=1), nn.Tanh())
for m in self.modules():
weights_init_normal(m)
def execute(self, img, z):
gen_input = jt.contrib.concat((img, self.fc(z).view(*img.shape)), dim=1)
out = self.l1(gen_input)
out = self.resblocks(out)
img_ = self.l2(out)
return img_
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def block(in_features, out_features, normalization=True):
'Discriminator block'
layers = [nn.Conv(in_features, out_features, 3, stride=2, padding=1), nn.LeakyReLU(scale=0.2)]
if normalization:
layers.append(nn.InstanceNorm2d(out_features, affine=None))
return layers
self.model = nn.Sequential(*block(opt.channels, 64, normalization=False), *block(64, 128), *block(128, 256), *block(256, 512), nn.Conv(512, 1, 3, stride=1, padding=1))
for m in self.modules():
weights_init_normal(m)
def execute(self, img):
validity = self.model(img)
return validity
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
def block(in_features, out_features, normalization=True):
'Classifier block'
layers = [nn.Conv(in_features, out_features, 3, stride=2, padding=1), nn.LeakyReLU(scale=0.2)]
if normalization:
layers.append(nn.InstanceNorm2d(out_features, affine=None))
return layers
self.model = nn.Sequential(*block(opt.channels, 64, normalization=False), *block(64, 128), *block(128, 256), *block(256, 512))
input_size = (opt.img_size // (2 ** 4))
self.output_layer = nn.Sequential(nn.Linear((512 * (input_size ** 2)), opt.n_classes), nn.Softmax())
for m in self.modules():
weights_init_normal(m)
def execute(self, img):
feature_repr = self.model(img)
feature_repr = feature_repr.view((feature_repr.shape[0], (- 1)))
label = self.output_layer(feature_repr)
return label
import cv2
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
cv2.imwrite(path,img)
# Loss function
adversarial_loss = nn.MSELoss()
task_loss = nn.CrossEntropyLoss()
# Loss weights
lambda_adv = 1
lambda_task = 0.1
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
classifier = Classifier()
# Configure data loader
transform = transform.Compose([
transform.Resize(opt.img_size),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader_A = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
dataloader_B = mnistm.MNISTM(mnist_root = "../../data/mnistm", train=True, transform = transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = nn.Adam(
generator.parameters() + classifier.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)
)
optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# ----------
# Training
# ----------
# Keeps 100 accuracy measurements
task_performance = []
target_performance = []
for epoch in range(opt.n_epochs):
for i, ((imgs_A, labels_A), (imgs_B, labels_B)) in enumerate(zip(dataloader_A, dataloader_B)):
jt.sync_all(True)
batch_size = imgs_A.size(0)
# imgs_B = jt.array(imgs_B.numpy()).float32()
# labels_B = jt.array(labels_B.numpy()).float32()
# Adversarial ground truths
valid = jt.ones([batch_size, *patch]).float32().stop_grad()
fake = jt.zeros([batch_size, *patch]).float32().stop_grad()
# -----------------
# Train Generator
# -----------------
# Sample noise
z = jt.array(np.random.uniform(-1, 1, (batch_size, opt.latent_dim))).float32()
# Generate a batch of images
fake_B = generator(imgs_A, z)
# Perform task on translated source image
label_pred = classifier(fake_B)
# Calculate the task loss
task_loss_ = (task_loss(label_pred, labels_A) + task_loss(classifier(imgs_A), labels_A)) / 2
# Loss measures generator's ability to fool the discriminator
g_loss = lambda_adv * adversarial_loss(discriminator(fake_B), valid) + lambda_task * task_loss_
optimizer_G.step(g_loss)
# ---------------------
# Train Discriminator
# ---------------------
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(imgs_B), valid)
fake_loss = adversarial_loss(discriminator(fake_B.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
optimizer_D.step(d_loss)
# ---------------------------------------
# Evaluate Performance on target domain
# ---------------------------------------
# Evaluate performance on translated Domain A
acc = np.mean(np.argmax(label_pred.numpy(), axis=1) == labels_A.numpy())
task_performance.append(acc)
if len(task_performance) > 100:
task_performance.pop(0)
# Evaluate performance on Domain B
pred_B = classifier(imgs_B)
target_acc = np.mean(np.argmax(pred_B.numpy(), axis=1) == labels_B.numpy())
target_performance.append(target_acc)
if len(target_performance) > 100:
target_performance.pop(0)
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] [CLF acc: %3d%% (%3d%%), target_acc: %3d%% (%3d%%)]"
% (
epoch,
opt.n_epochs,
i,
len(dataloader_A),
d_loss.data[0],
g_loss.data[0],
100 * acc,
100 * np.mean(task_performance),
100 * target_acc,
100 * np.mean(target_performance),
)
)
batches_done = len(dataloader_A) * epoch + i
if batches_done % opt.sample_interval == 0:
sample = jt.contrib.concat((imgs_A[:5], fake_B[:5], imgs_B[:5]), 2)
save_image(sample.numpy(), "images/%d.png" % batches_done, nrow=5)