173 lines
5.4 KiB
Go
173 lines
5.4 KiB
Go
/*
|
||
|
||
Copyright (c) [2023] [pcm]
|
||
[pcm-coordinator] is licensed under Mulan PSL v2.
|
||
You can use this software according to the terms and conditions of the Mulan PSL v2.
|
||
You may obtain a copy of Mulan PSL v2 at:
|
||
http://license.coscl.org.cn/MulanPSL2
|
||
THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
|
||
EITHER EXPaRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
|
||
MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
|
||
See the Mulan PSL v2 for more details.
|
||
|
||
*/
|
||
|
||
package providerPricing
|
||
|
||
import (
|
||
"gonum.org/v1/gonum/mat"
|
||
"math"
|
||
)
|
||
|
||
func ComputeProfit(task *Task, tasksolution []int, resourcesolution []int, providerList []*Provider) float64 {
|
||
var timeexecution int //记录任务的实际最大执行时间
|
||
var costSum float64 //该任务在多个云厂商所需支付的成本总价
|
||
|
||
for i, provider := range providerList {
|
||
|
||
//如果该厂商分的任务为0,则直接跳过该厂商,循环到下一厂商
|
||
if tasksolution[i] == 0 {
|
||
continue
|
||
}
|
||
|
||
//先计算下该云厂商的执行时间ddl,并替换任务的最大执行时间,向上取整
|
||
t := math.Ceil(float64(tasksolution[i])/float64(resourcesolution[i])) * float64(task.Time)
|
||
if int(t) > timeexecution {
|
||
timeexecution = int(t)
|
||
}
|
||
|
||
//计算前几份资源多执行任务
|
||
forOneMoreTaskNUm := tasksolution[i] % resourcesolution[i]
|
||
|
||
for j := 0; j < resourcesolution[i]; j++ {
|
||
if j < forOneMoreTaskNUm {
|
||
t = math.Ceil(float64(tasksolution[i])/float64(resourcesolution[i])) * float64(task.Time)
|
||
} else {
|
||
t = math.Floor(float64(tasksolution[i])/float64(resourcesolution[i])) * float64(task.Time)
|
||
}
|
||
|
||
//如果这份资源分的的任务数
|
||
cost := (provider.CpuCost*task.Cpu + provider.MemCost*task.Mem + provider.DiskCost*task.Disk) * t * (math.Pow(float64(j+1), math.Log2(provider.LearnIndex)))
|
||
costSum += cost
|
||
}
|
||
|
||
}
|
||
|
||
//计算用户的支付价格pay
|
||
pay := task.Pr
|
||
if timeexecution == task.Time { //没有排队等待,且只有一个副本直接执行或者多个副本完全并行执行
|
||
if pay < costSum {
|
||
pay = costSum
|
||
}
|
||
} else if timeexecution >= task.T0 && timeexecution <= task.T1 { //有排队时间或者任务存在串行执行
|
||
if task.T1 == task.T0 { //仅有一个副本,时间中有排队时间
|
||
e := math.Exp(float64(-task.B) * float64(timeexecution-task.T1))
|
||
pay = (1 - 1/(1+e)) * task.Pr
|
||
} else { //多个副本
|
||
e := math.Exp(float64(-task.B) * float64(timeexecution-task.T1) / float64(task.T1-task.T0))
|
||
pay = (1 - 1/(1+e)) * task.Pr
|
||
}
|
||
|
||
if pay < costSum {
|
||
pay = costSum
|
||
}
|
||
} else { //超出用户满意度的完全串行时间
|
||
pay = 1 / 2 * task.Pr
|
||
if pay < costSum {
|
||
pay = costSum
|
||
}
|
||
}
|
||
|
||
profitSum := pay - costSum
|
||
return profitSum
|
||
}
|
||
|
||
func ComputeHighDegree(task *Task, resourcesolution []int, providerList []*Provider) float64 {
|
||
var highDegreeSum float64
|
||
// 依次计算每个云厂商的资源可用度
|
||
for i, provider := range providerList {
|
||
// 定义两个四维向量
|
||
// 未来任务资源需求比例
|
||
futureDemand := mat.NewVecDense(3, []float64{1, 1, 1})
|
||
|
||
// 定义假设按此方案分配后的剩余资源可用量,时间虽然有差异,但是先按那个时刻算吧,这里可能还要改一下
|
||
nowLeft_cpu := provider.CpuAvail - task.Cpu*float64(resourcesolution[i])
|
||
nowLeft_mem := provider.MemAvail - task.Mem*float64(resourcesolution[i])
|
||
nowLeft_disk := provider.DiskAvail - task.Disk*float64(resourcesolution[i])
|
||
|
||
nowLeft := mat.NewVecDense(3, []float64{nowLeft_cpu, nowLeft_mem, nowLeft_disk})
|
||
// 使用余弦相似度计算两个比值的相近度
|
||
// 计算向量的内积
|
||
dot_product := mat.Dot(futureDemand, nowLeft)
|
||
|
||
// 计算向量的模长
|
||
magnitude1 := mat.Norm(futureDemand, 2)
|
||
magnitude2 := mat.Norm(nowLeft, 2)
|
||
|
||
// 计算余弦相似度
|
||
//临时处理被除数为0的特殊情况
|
||
var cosineSimilarity = 0.0
|
||
if magnitude1 != 0 && magnitude2 != 0 {
|
||
cosineSimilarity = dot_product / (magnitude1 * magnitude2)
|
||
}
|
||
|
||
highDegreeSum += cosineSimilarity
|
||
}
|
||
|
||
return highDegreeSum / float64(len(providerList))
|
||
}
|
||
|
||
func Back_trace_task(ReplicaNum int, DoneReplicasNum int, providerList []*Provider, staclu int, res *[][]int, sum int) {
|
||
//var count int = 0
|
||
pnum := len(providerList)
|
||
|
||
//所有的任务数都已经进行分配
|
||
if DoneReplicasNum == ReplicaNum {
|
||
var a []int
|
||
for i := 0; i < pnum; i++ {
|
||
a = append(a, providerList[i].CurReplicas)
|
||
}
|
||
*res = append(*res, a)
|
||
//(*res)[0] = append((*res)[0], a)
|
||
//count += 1
|
||
return
|
||
}
|
||
|
||
//遍历完所有的云厂商序号
|
||
if staclu >= pnum {
|
||
return
|
||
}
|
||
|
||
if providerList[staclu].CurReplicas < providerList[staclu].MaxTaskCanRun {
|
||
providerList[staclu].CurReplicas += 1
|
||
Back_trace_task(ReplicaNum, DoneReplicasNum+1, providerList, staclu, res, sum)
|
||
providerList[staclu].CurReplicas -= 1
|
||
Back_trace_task(ReplicaNum, DoneReplicasNum, providerList, staclu+1, res, sum)
|
||
} else {
|
||
Back_trace_task(ReplicaNum, DoneReplicasNum, providerList, staclu+1, res, sum)
|
||
}
|
||
|
||
}
|
||
|
||
func Back_trace_resource(list []int, i int, path []int, pathlist *[][]int) {
|
||
if i == len(list) {
|
||
var pathCopy = make([]int, len(path))
|
||
copy(pathCopy, path)
|
||
*pathlist = append(*pathlist, pathCopy)
|
||
return
|
||
}
|
||
|
||
if list[i] == 0 {
|
||
path = append(path, 0)
|
||
Back_trace_resource(list, i+1, path, pathlist)
|
||
path = path[:len(path)-1]
|
||
} else {
|
||
for j := 1; j < list[i]+1; j++ {
|
||
path = append(path, j)
|
||
Back_trace_resource(list, i+1, path, pathlist)
|
||
path = path[:len(path)-1]
|
||
}
|
||
}
|
||
|
||
}
|