211 lines
7.0 KiB
Python
211 lines
7.0 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
|
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle import ParamAttr
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
import numpy as np
|
|
|
|
__all__ = ["ResNet31"]
|
|
|
|
|
|
def conv3x3(in_channel, out_channel, stride=1):
|
|
return nn.Conv2D(
|
|
in_channel,
|
|
out_channel,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias_attr=False)
|
|
|
|
|
|
class BasicBlock(nn.Layer):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_channels, channels, stride=1, downsample=False):
|
|
super().__init__()
|
|
self.conv1 = conv3x3(in_channels, channels, stride)
|
|
self.bn1 = nn.BatchNorm2D(channels)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = conv3x3(channels, channels)
|
|
self.bn2 = nn.BatchNorm2D(channels)
|
|
self.downsample = downsample
|
|
if downsample:
|
|
self.downsample = nn.Sequential(
|
|
nn.Conv2D(
|
|
in_channels,
|
|
channels * self.expansion,
|
|
1,
|
|
stride,
|
|
bias_attr=False),
|
|
nn.BatchNorm2D(channels * self.expansion), )
|
|
else:
|
|
self.downsample = nn.Sequential()
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet31(nn.Layer):
|
|
'''
|
|
Args:
|
|
in_channels (int): Number of channels of input image tensor.
|
|
layers (list[int]): List of BasicBlock number for each stage.
|
|
channels (list[int]): List of out_channels of Conv2d layer.
|
|
out_indices (None | Sequence[int]): Indices of output stages.
|
|
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
|
|
'''
|
|
|
|
def __init__(self,
|
|
in_channels=3,
|
|
layers=[1, 2, 5, 3],
|
|
channels=[64, 128, 256, 256, 512, 512, 512],
|
|
out_indices=None,
|
|
last_stage_pool=False):
|
|
super(ResNet31, self).__init__()
|
|
assert isinstance(in_channels, int)
|
|
assert isinstance(last_stage_pool, bool)
|
|
|
|
self.out_indices = out_indices
|
|
self.last_stage_pool = last_stage_pool
|
|
|
|
# conv 1 (Conv Conv)
|
|
self.conv1_1 = nn.Conv2D(
|
|
in_channels, channels[0], kernel_size=3, stride=1, padding=1)
|
|
self.bn1_1 = nn.BatchNorm2D(channels[0])
|
|
self.relu1_1 = nn.ReLU()
|
|
|
|
self.conv1_2 = nn.Conv2D(
|
|
channels[0], channels[1], kernel_size=3, stride=1, padding=1)
|
|
self.bn1_2 = nn.BatchNorm2D(channels[1])
|
|
self.relu1_2 = nn.ReLU()
|
|
|
|
# conv 2 (Max-pooling, Residual block, Conv)
|
|
self.pool2 = nn.MaxPool2D(
|
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
|
|
self.conv2 = nn.Conv2D(
|
|
channels[2], channels[2], kernel_size=3, stride=1, padding=1)
|
|
self.bn2 = nn.BatchNorm2D(channels[2])
|
|
self.relu2 = nn.ReLU()
|
|
|
|
# conv 3 (Max-pooling, Residual block, Conv)
|
|
self.pool3 = nn.MaxPool2D(
|
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
|
|
self.conv3 = nn.Conv2D(
|
|
channels[3], channels[3], kernel_size=3, stride=1, padding=1)
|
|
self.bn3 = nn.BatchNorm2D(channels[3])
|
|
self.relu3 = nn.ReLU()
|
|
|
|
# conv 4 (Max-pooling, Residual block, Conv)
|
|
self.pool4 = nn.MaxPool2D(
|
|
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
|
|
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
|
|
self.conv4 = nn.Conv2D(
|
|
channels[4], channels[4], kernel_size=3, stride=1, padding=1)
|
|
self.bn4 = nn.BatchNorm2D(channels[4])
|
|
self.relu4 = nn.ReLU()
|
|
|
|
# conv 5 ((Max-pooling), Residual block, Conv)
|
|
self.pool5 = None
|
|
if self.last_stage_pool:
|
|
self.pool5 = nn.MaxPool2D(
|
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
|
|
self.conv5 = nn.Conv2D(
|
|
channels[5], channels[5], kernel_size=3, stride=1, padding=1)
|
|
self.bn5 = nn.BatchNorm2D(channels[5])
|
|
self.relu5 = nn.ReLU()
|
|
|
|
self.out_channels = channels[-1]
|
|
|
|
def _make_layer(self, input_channels, output_channels, blocks):
|
|
layers = []
|
|
for _ in range(blocks):
|
|
downsample = None
|
|
if input_channels != output_channels:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2D(
|
|
input_channels,
|
|
output_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
bias_attr=False),
|
|
nn.BatchNorm2D(output_channels), )
|
|
|
|
layers.append(
|
|
BasicBlock(
|
|
input_channels, output_channels, downsample=downsample))
|
|
input_channels = output_channels
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1_1(x)
|
|
x = self.bn1_1(x)
|
|
x = self.relu1_1(x)
|
|
|
|
x = self.conv1_2(x)
|
|
x = self.bn1_2(x)
|
|
x = self.relu1_2(x)
|
|
|
|
outs = []
|
|
for i in range(4):
|
|
layer_index = i + 2
|
|
pool_layer = getattr(self, f'pool{layer_index}')
|
|
block_layer = getattr(self, f'block{layer_index}')
|
|
conv_layer = getattr(self, f'conv{layer_index}')
|
|
bn_layer = getattr(self, f'bn{layer_index}')
|
|
relu_layer = getattr(self, f'relu{layer_index}')
|
|
|
|
if pool_layer is not None:
|
|
x = pool_layer(x)
|
|
x = block_layer(x)
|
|
x = conv_layer(x)
|
|
x = bn_layer(x)
|
|
x = relu_layer(x)
|
|
|
|
outs.append(x)
|
|
|
|
if self.out_indices is not None:
|
|
return tuple([outs[i] for i in self.out_indices])
|
|
|
|
return x
|