COVID-19KG/terminal_predict.py

374 lines
13 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import tensorflow as tf
import numpy as np
import codecs
import pickle
import os
from datetime import datetime
from bert_base.train.model_utlis import create_model, InputFeatures
from bert_base.bert import tokenization, modeling
flags = tf.flags
FLAGS = flags.FLAGS
#输入输出地址
flags.DEFINE_string('data_dir', 'data', '数据集地址')
flags.DEFINE_string('output_dir', 'output', '输出地址')
#Bert相关参数
flags.DEFINE_string('bert_config_file', 'chinese_L-12_H-768_A-12/bert_config.json', 'Bert配置文件')
flags.DEFINE_string('vocab_file', 'chinese_L-12_H-768_A-12/vocab.txt','vocab_file')
flags.DEFINE_string('init_checkpoint','chinese_L-12_H-768_A-12/bert_model.ckpt', 'init_checkpoint')
#训练和校验的相关参数
flags.DEFINE_bool('do_train', False, '是否开始训练')
flags.DEFINE_bool('do_dev', False, '是否开始校验')
flags.DEFINE_bool('do_test', True, '是否开始测试')
flags.DEFINE_bool('do_lower_case', True, '是否转换小写')
#模型相关的
flags.DEFINE_integer('lstm_size', 128, 'lstm_size')
flags.DEFINE_integer('num_layers', 1, 'num_layers')
flags.DEFINE_integer('max_seq_length', 128, 'max_seq_length')
flags.DEFINE_integer('train_batch_size', 64, 'train_batch_size')
flags.DEFINE_integer('dev_batch_size',64, 'dev_batch_size')
flags.DEFINE_integer('test_batch_size', 32, 'test_batch_size')
flags.DEFINE_integer('save_checkpoints_steps', 500, 'save_checkpoints_steps')
flags.DEFINE_integer('iterations_per_loop', 500, 'iterations_per_loop')
flags.DEFINE_integer('save_summary_steps', 500, 'save_summary_steps')
flags.DEFINE_string('cell', 'lstm', 'cell')
flags.DEFINE_float('learning_rate', 5e-5, 'learning_rate')
flags.DEFINE_float('dropout_rate', 0.5, 'dropout_rate')
flags.DEFINE_float('clip', 0.5, 'clip')
flags.DEFINE_float('num_train_epochs', 10.0, 'num_train_epochs')
flags.DEFINE_float("warmup_proportion", 0.1,'warmup_proportion')
model_dir = r'output'
bert_dir = 'chinese_L-12_H-768_A-12'
is_training=False
use_one_hot_embeddings=False
batch_size=1
gpu_config = tf.ConfigProto()
gpu_config.gpu_options.allow_growth = True
sess=tf.Session(config=gpu_config)
model=None
global graph
input_ids_p, input_mask_p, label_ids_p, segment_ids_p = None, None, None, None
print('checkpoint path:{}'.format(os.path.join(model_dir, "checkpoint")))
if not os.path.exists(os.path.join(model_dir, "checkpoint")):
raise Exception("failed to get checkpoint. going to return ")
# 加载label->id的词典
with codecs.open(os.path.join(model_dir, 'label2id.pkl'), 'rb') as rf:
label2id = pickle.load(rf)
id2label = {value: key for key, value in label2id.items()}
with codecs.open(os.path.join(model_dir, 'label_list.pkl'), 'rb') as rf:
label_list = pickle.load(rf)
num_labels = len(label_list) + 1
graph = tf.get_default_graph()
with graph.as_default():
print("going to restore checkpoint")
#sess.run(tf.global_variables_initializer())
input_ids_p = tf.placeholder(tf.int32, [batch_size, FLAGS.max_seq_length], name="input_ids")
input_mask_p = tf.placeholder(tf.int32, [batch_size, FLAGS.max_seq_length], name="input_mask")
bert_config = modeling.BertConfig.from_json_file(os.path.join(bert_dir, 'bert_config.json'))
(total_loss, logits, trans, pred_ids) = create_model(
bert_config=bert_config, is_training=False, input_ids=input_ids_p, input_mask=input_mask_p, segment_ids=None,
labels=None, num_labels=num_labels, use_one_hot_embeddings=False, dropout_rate=1.0)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
tokenizer = tokenization.FullTokenizer(
vocab_file=os.path.join(bert_dir, 'vocab.txt'), do_lower_case=FLAGS.do_lower_case)
def predict_online():
"""
do online prediction. each time make prediction for one instance.
you can change to a batch if you want.
:param line: a list. element is: [dummy_label,text_a,text_b]
:return:
"""
def convert(line):
feature = convert_single_example(0, line, label_list, FLAGS.max_seq_length, tokenizer, 'p')
input_ids = np.reshape([feature.input_ids],(batch_size, FLAGS.max_seq_length))
input_mask = np.reshape([feature.input_mask],(batch_size, FLAGS.max_seq_length))
segment_ids = np.reshape([feature.segment_ids],(batch_size, FLAGS.max_seq_length))
label_ids =np.reshape([feature.label_ids],(batch_size, FLAGS.max_seq_length))
return input_ids, input_mask, segment_ids, label_ids
global graph
with graph.as_default():
print(id2label)
while True:
print('input the test sentence:')
sentence = str(input())
start = datetime.now()
if len(sentence) < 2:
print(sentence)
continue
sentence = tokenizer.tokenize(sentence)
# print('your input is:{}'.format(sentence))
input_ids, input_mask, segment_ids, label_ids = convert(sentence)
feed_dict = {input_ids_p: input_ids,
input_mask_p: input_mask}
# run session get current feed_dict result
pred_ids_result = sess.run([pred_ids], feed_dict)
pred_label_result = convert_id_to_label(pred_ids_result, id2label)
print(pred_label_result)
#todo: 组合策略
result = strage_combined_link_org_loc(sentence, pred_label_result[0])
print('time used: {} sec'.format((datetime.now() - start).total_seconds()))
def convert_id_to_label(pred_ids_result, idx2label):
"""
将id形式的结果转化为真实序列结果
:param pred_ids_result:
:param idx2label:
:return:
"""
result = []
for row in range(batch_size):
curr_seq = []
for ids in pred_ids_result[row][0]:
if ids == 0:
break
curr_label = idx2label[ids]
if curr_label in ['[CLS]', '[SEP]']:
continue
curr_seq.append(curr_label)
result.append(curr_seq)
return result
def strage_combined_link_org_loc(tokens, tags):
"""
组合策略
:param pred_label_result:
:param types:
:return:
"""
def print_output(data, type):
line = []
line.append(type)
for i in data:
line.append(i.word)
print(', '.join(line))
params = None
eval = Result(params)
if len(tokens) > len(tags):
tokens = tokens[:len(tags)]
person, loc, org = eval.get_result(tokens, tags)
print_output(loc, 'LOC')
print_output(person, 'PER')
print_output(org, 'ORG')
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode):
"""
将一个样本进行分析然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中
:param ex_index: index
:param example: 一个样本
:param label_list: 标签列表
:param max_seq_length:
:param tokenizer:
:param mode:
:return:
"""
label_map = {}
# 1表示从1开始对label进行index化
for (i, label) in enumerate(label_list, 1):
label_map[label] = i
# 保存label->index 的map
if not os.path.exists(os.path.join(model_dir, 'label2id.pkl')):
with codecs.open(os.path.join(model_dir, 'label2id.pkl'), 'wb') as w:
pickle.dump(label_map, w)
tokens = example
# tokens = tokenizer.tokenize(example.text)
# 序列截断
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)] # -2 的原因是因为序列需要加一个句首和句尾标志
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]") # 句子开始设置CLS 标志
segment_ids.append(0)
# append("O") or append("[CLS]") not sure!
label_ids.append(label_map["[CLS]"]) # O OR CLS 没有任何影响不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注使用LCS 也没毛病
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(0)
ntokens.append("[SEP]") # 句尾添加[SEP] 标志
segment_ids.append(0)
# append("O") or append("[SEP]") not sure!
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens) # 将序列中的字(ntokens)转化为ID形式
input_mask = [1] * len(input_ids)
# padding, 使用
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
# we don't concerned about it!
label_ids.append(0)
ntokens.append("**NULL**")
# label_mask.append(0)
# print(len(input_ids))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
# assert len(label_mask) == max_seq_length
# 结构化为一个类
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
# label_mask = label_mask
)
return feature
class Pair(object):
def __init__(self, word, start, end, type, merge=False):
self.__word = word
self.__start = start
self.__end = end
self.__merge = merge
self.__types = type
@property
def start(self):
return self.__start
@property
def end(self):
return self.__end
@property
def merge(self):
return self.__merge
@property
def word(self):
return self.__word
@property
def types(self):
return self.__types
@word.setter
def word(self, word):
self.__word = word
@start.setter
def start(self, start):
self.__start = start
@end.setter
def end(self, end):
self.__end = end
@merge.setter
def merge(self, merge):
self.__merge = merge
@types.setter
def types(self, type):
self.__types = type
def __str__(self) -> str:
line = []
line.append('entity:{}'.format(self.__word))
line.append('start:{}'.format(self.__start))
line.append('end:{}'.format(self.__end))
line.append('merge:{}'.format(self.__merge))
line.append('types:{}'.format(self.__types))
return '\t'.join(line)
class Result(object):
def __init__(self, config):
self.config = config
self.person = []
self.loc = []
self.org = []
self.others = []
def get_result(self, tokens, tags, config=None):
# 先获取标注结果
self.result_to_json(tokens, tags)
return self.person, self.loc, self.org
def result_to_json(self, string, tags):
"""
将模型标注序列和输入序列结合 转化为结果
:param string: 输入序列
:param tags: 标注结果
:return:
"""
item = {"entities": []}
entity_name = ""
entity_start = 0
idx = 0
last_tag = ''
for char, tag in zip(string, tags):
if tag[0] == "S":
self.append(char, idx, idx+1, tag[2:])
item["entities"].append({"word": char, "start": idx, "end": idx+1, "type":tag[2:]})
elif tag[0] == "B":
if entity_name != '':
self.append(entity_name, entity_start, idx, last_tag[2:])
item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
entity_name = ""
entity_name += char
entity_start = idx
elif tag[0] == "I":
entity_name += char
elif tag[0] == "O":
if entity_name != '':
self.append(entity_name, entity_start, idx, last_tag[2:])
item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
entity_name = ""
else:
entity_name = ""
entity_start = idx
idx += 1
last_tag = tag
if entity_name != '':
self.append(entity_name, entity_start, idx, last_tag[2:])
item["entities"].append({"word": entity_name, "start": entity_start, "end": idx, "type": last_tag[2:]})
return item
def append(self, word, start, end, tag):
if tag == 'LOC':
self.loc.append(Pair(word, start, end, 'LOC'))
elif tag == 'PER':
self.person.append(Pair(word, start, end, 'PER'))
elif tag == 'ORG':
self.org.append(Pair(word, start, end, 'ORG'))
else:
self.others.append(Pair(word, start, end, tag))
if __name__ == "__main__":
predict_online()