rig/rig-core/examples/rag_dynamic_tools.rs

180 lines
4.9 KiB
Rust

use anyhow::Result;
use rig::{
completion::{Prompt, ToolDefinition},
embeddings::EmbeddingsBuilder,
providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
tool::{Tool, ToolEmbedding, ToolSet},
vector_store::in_memory_store::InMemoryVectorStore,
};
use serde::{Deserialize, Serialize};
use serde_json::json;
use std::env;
#[derive(Deserialize)]
struct OperationArgs {
x: i32,
y: i32,
}
#[derive(Debug, thiserror::Error)]
#[error("Math error")]
struct MathError;
#[derive(Debug, thiserror::Error)]
#[error("Math error")]
struct InitError;
#[derive(Deserialize, Serialize)]
struct Add;
impl Tool for Add {
const NAME: &'static str = "add";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "add",
"description": "Add x and y together",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The first number to add"
},
"y": {
"type": "number",
"description": "The second number to add"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x + args.y;
Ok(result)
}
}
impl ToolEmbedding for Add {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Add)
}
fn embedding_docs(&self) -> Vec<String> {
vec!["Add x and y together".into()]
}
fn context(&self) -> Self::Context {}
}
#[derive(Deserialize, Serialize)]
struct Subtract;
impl Tool for Subtract {
const NAME: &'static str = "subtract";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "subtract",
"description": "Subtract y from x (i.e.: x - y)",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The number to subtract from"
},
"y": {
"type": "number",
"description": "The number to subtract"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x - args.y;
Ok(result)
}
}
impl ToolEmbedding for Subtract {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Subtract)
}
fn context(&self) -> Self::Context {}
fn embedding_docs(&self) -> Vec<String> {
vec!["Subtract y from x (i.e.: x - y)".into()]
}
}
#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {
// required to enable CloudWatch error logging by the runtime
tracing_subscriber::fmt()
.with_max_level(tracing::Level::INFO)
// disable printing the name of the module in every log line.
.with_target(false)
.init();
// Create OpenAI client
let openai_api_key = env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY not set");
let openai_client = Client::new(&openai_api_key);
let embedding_model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);
let toolset = ToolSet::builder()
.dynamic_tool(Add)
.dynamic_tool(Subtract)
.build();
let embeddings = EmbeddingsBuilder::new(embedding_model.clone())
.documents(toolset.schemas()?)?
.build()
.await?;
// Create vector store with the embeddings
let vector_store =
InMemoryVectorStore::from_documents_with_id_f(embeddings, |tool| tool.name.clone());
// Create vector store index
let index = vector_store.index(embedding_model);
// Create RAG agent with a single context prompt and a dynamic tool source
let calculator_rag = openai_client
.agent("gpt-4")
.preamble("You are a calculator here to help the user perform arithmetic operations.")
// Add a dynamic tool source with a sample rate of 1 (i.e.: only
// 1 additional tool will be added to prompts)
.dynamic_tools(1, index, toolset)
.build();
// Prompt the agent and print the response
let response = calculator_rag.prompt("Calculate 3 - 7").await?;
println!("{}", response);
Ok(())
}