mirror of https://github.com/0xplaygrounds/rig
180 lines
4.9 KiB
Rust
180 lines
4.9 KiB
Rust
use anyhow::Result;
|
|
use rig::{
|
|
completion::{Prompt, ToolDefinition},
|
|
embeddings::EmbeddingsBuilder,
|
|
providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
|
|
tool::{Tool, ToolEmbedding, ToolSet},
|
|
vector_store::in_memory_store::InMemoryVectorStore,
|
|
};
|
|
use serde::{Deserialize, Serialize};
|
|
use serde_json::json;
|
|
use std::env;
|
|
|
|
#[derive(Deserialize)]
|
|
struct OperationArgs {
|
|
x: i32,
|
|
y: i32,
|
|
}
|
|
|
|
#[derive(Debug, thiserror::Error)]
|
|
#[error("Math error")]
|
|
struct MathError;
|
|
|
|
#[derive(Debug, thiserror::Error)]
|
|
#[error("Math error")]
|
|
struct InitError;
|
|
|
|
#[derive(Deserialize, Serialize)]
|
|
struct Add;
|
|
|
|
impl Tool for Add {
|
|
const NAME: &'static str = "add";
|
|
|
|
type Error = MathError;
|
|
type Args = OperationArgs;
|
|
type Output = i32;
|
|
|
|
async fn definition(&self, _prompt: String) -> ToolDefinition {
|
|
serde_json::from_value(json!({
|
|
"name": "add",
|
|
"description": "Add x and y together",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"x": {
|
|
"type": "number",
|
|
"description": "The first number to add"
|
|
},
|
|
"y": {
|
|
"type": "number",
|
|
"description": "The second number to add"
|
|
}
|
|
}
|
|
}
|
|
}))
|
|
.expect("Tool Definition")
|
|
}
|
|
|
|
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
|
|
let result = args.x + args.y;
|
|
Ok(result)
|
|
}
|
|
}
|
|
|
|
impl ToolEmbedding for Add {
|
|
type InitError = InitError;
|
|
type Context = ();
|
|
type State = ();
|
|
|
|
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
|
|
Ok(Add)
|
|
}
|
|
|
|
fn embedding_docs(&self) -> Vec<String> {
|
|
vec!["Add x and y together".into()]
|
|
}
|
|
|
|
fn context(&self) -> Self::Context {}
|
|
}
|
|
|
|
#[derive(Deserialize, Serialize)]
|
|
struct Subtract;
|
|
|
|
impl Tool for Subtract {
|
|
const NAME: &'static str = "subtract";
|
|
|
|
type Error = MathError;
|
|
type Args = OperationArgs;
|
|
type Output = i32;
|
|
|
|
async fn definition(&self, _prompt: String) -> ToolDefinition {
|
|
serde_json::from_value(json!({
|
|
"name": "subtract",
|
|
"description": "Subtract y from x (i.e.: x - y)",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"x": {
|
|
"type": "number",
|
|
"description": "The number to subtract from"
|
|
},
|
|
"y": {
|
|
"type": "number",
|
|
"description": "The number to subtract"
|
|
}
|
|
}
|
|
}
|
|
}))
|
|
.expect("Tool Definition")
|
|
}
|
|
|
|
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
|
|
let result = args.x - args.y;
|
|
Ok(result)
|
|
}
|
|
}
|
|
|
|
impl ToolEmbedding for Subtract {
|
|
type InitError = InitError;
|
|
type Context = ();
|
|
type State = ();
|
|
|
|
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
|
|
Ok(Subtract)
|
|
}
|
|
|
|
fn context(&self) -> Self::Context {}
|
|
|
|
fn embedding_docs(&self) -> Vec<String> {
|
|
vec!["Subtract y from x (i.e.: x - y)".into()]
|
|
}
|
|
}
|
|
|
|
#[tokio::main]
|
|
async fn main() -> Result<(), anyhow::Error> {
|
|
// required to enable CloudWatch error logging by the runtime
|
|
tracing_subscriber::fmt()
|
|
.with_max_level(tracing::Level::INFO)
|
|
// disable printing the name of the module in every log line.
|
|
.with_target(false)
|
|
.init();
|
|
|
|
// Create OpenAI client
|
|
let openai_api_key = env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY not set");
|
|
let openai_client = Client::new(&openai_api_key);
|
|
|
|
let embedding_model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);
|
|
|
|
let toolset = ToolSet::builder()
|
|
.dynamic_tool(Add)
|
|
.dynamic_tool(Subtract)
|
|
.build();
|
|
|
|
let embeddings = EmbeddingsBuilder::new(embedding_model.clone())
|
|
.documents(toolset.schemas()?)?
|
|
.build()
|
|
.await?;
|
|
|
|
// Create vector store with the embeddings
|
|
let vector_store =
|
|
InMemoryVectorStore::from_documents_with_id_f(embeddings, |tool| tool.name.clone());
|
|
|
|
// Create vector store index
|
|
let index = vector_store.index(embedding_model);
|
|
|
|
// Create RAG agent with a single context prompt and a dynamic tool source
|
|
let calculator_rag = openai_client
|
|
.agent("gpt-4")
|
|
.preamble("You are a calculator here to help the user perform arithmetic operations.")
|
|
// Add a dynamic tool source with a sample rate of 1 (i.e.: only
|
|
// 1 additional tool will be added to prompts)
|
|
.dynamic_tools(1, index, toolset)
|
|
.build();
|
|
|
|
// Prompt the agent and print the response
|
|
let response = calculator_rag.prompt("Calculate 3 - 7").await?;
|
|
println!("{}", response);
|
|
|
|
Ok(())
|
|
}
|