mirror of https://github.com/langgenius/dify.git
fix(batch_create_segment_to_index_task): count max_position in memory. (#12929)
This commit is contained in:
parent
c62b7cc679
commit
f91f5c7401
|
@ -13,6 +13,7 @@ from typing import Any, cast
|
|||
|
||||
from sqlalchemy import func
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
from sqlalchemy.orm import Mapped
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
|
@ -515,7 +516,7 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
|
|||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
dataset_id = db.Column(StringUUID, nullable=False)
|
||||
document_id = db.Column(StringUUID, nullable=False)
|
||||
position = db.Column(db.Integer, nullable=False)
|
||||
position: Mapped[int]
|
||||
content = db.Column(db.Text, nullable=False)
|
||||
answer = db.Column(db.Text, nullable=True)
|
||||
word_count = db.Column(db.Integer, nullable=False)
|
||||
|
|
|
@ -5,7 +5,8 @@ import uuid
|
|||
|
||||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
from sqlalchemy import func
|
||||
from sqlalchemy import func, select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
|
@ -18,7 +19,12 @@ from services.vector_service import VectorService
|
|||
|
||||
@shared_task(queue="dataset")
|
||||
def batch_create_segment_to_index_task(
|
||||
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
|
||||
job_id: str,
|
||||
content: list,
|
||||
dataset_id: str,
|
||||
document_id: str,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
):
|
||||
"""
|
||||
Async batch create segment to index
|
||||
|
@ -37,71 +43,80 @@ def batch_create_segment_to_index_task(
|
|||
indexing_cache_key = "segment_batch_import_{}".format(job_id)
|
||||
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if not dataset:
|
||||
raise ValueError("Dataset not exist.")
|
||||
with Session(db.engine) as session:
|
||||
dataset = session.get(Dataset, dataset_id)
|
||||
if not dataset:
|
||||
raise ValueError("Dataset not exist.")
|
||||
|
||||
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
|
||||
if not dataset_document:
|
||||
raise ValueError("Document not exist.")
|
||||
dataset_document = session.get(Document, document_id)
|
||||
if not dataset_document:
|
||||
raise ValueError("Document not exist.")
|
||||
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
|
||||
raise ValueError("Document is not available.")
|
||||
document_segments = []
|
||||
embedding_model = None
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
model_manager = ModelManager()
|
||||
embedding_model = model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model,
|
||||
if (
|
||||
not dataset_document.enabled
|
||||
or dataset_document.archived
|
||||
or dataset_document.indexing_status != "completed"
|
||||
):
|
||||
raise ValueError("Document is not available.")
|
||||
document_segments = []
|
||||
embedding_model = None
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
model_manager = ModelManager()
|
||||
embedding_model = model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
word_count_change = 0
|
||||
segments_to_insert: list[str] = []
|
||||
max_position_stmt = select(func.max(DocumentSegment.position)).where(
|
||||
DocumentSegment.document_id == dataset_document.id
|
||||
)
|
||||
word_count_change = 0
|
||||
segments_to_insert: list[str] = [] # Explicitly type hint the list as List[str]
|
||||
for segment in content:
|
||||
content_str = segment["content"]
|
||||
doc_id = str(uuid.uuid4())
|
||||
segment_hash = helper.generate_text_hash(content_str)
|
||||
# calc embedding use tokens
|
||||
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content_str]) if embedding_model else 0
|
||||
max_position = (
|
||||
db.session.query(func.max(DocumentSegment.position))
|
||||
.filter(DocumentSegment.document_id == dataset_document.id)
|
||||
.scalar()
|
||||
)
|
||||
segment_document = DocumentSegment(
|
||||
tenant_id=tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
document_id=document_id,
|
||||
index_node_id=doc_id,
|
||||
index_node_hash=segment_hash,
|
||||
position=max_position + 1 if max_position else 1,
|
||||
content=content_str,
|
||||
word_count=len(content_str),
|
||||
tokens=tokens,
|
||||
created_by=user_id,
|
||||
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
||||
status="completed",
|
||||
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
||||
)
|
||||
if dataset_document.doc_form == "qa_model":
|
||||
segment_document.answer = segment["answer"]
|
||||
segment_document.word_count += len(segment["answer"])
|
||||
word_count_change += segment_document.word_count
|
||||
db.session.add(segment_document)
|
||||
document_segments.append(segment_document)
|
||||
segments_to_insert.append(str(segment)) # Cast to string if needed
|
||||
# update document word count
|
||||
dataset_document.word_count += word_count_change
|
||||
db.session.add(dataset_document)
|
||||
# add index to db
|
||||
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
|
||||
db.session.commit()
|
||||
max_position = session.scalar(max_position_stmt) or 1
|
||||
for segment in content:
|
||||
content_str = segment["content"]
|
||||
doc_id = str(uuid.uuid4())
|
||||
segment_hash = helper.generate_text_hash(content_str)
|
||||
# calc embedding use tokens
|
||||
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content_str]) if embedding_model else 0
|
||||
segment_document = DocumentSegment(
|
||||
tenant_id=tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
document_id=document_id,
|
||||
index_node_id=doc_id,
|
||||
index_node_hash=segment_hash,
|
||||
position=max_position,
|
||||
content=content_str,
|
||||
word_count=len(content_str),
|
||||
tokens=tokens,
|
||||
created_by=user_id,
|
||||
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
||||
status="completed",
|
||||
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
||||
)
|
||||
max_position += 1
|
||||
if dataset_document.doc_form == "qa_model":
|
||||
segment_document.answer = segment["answer"]
|
||||
segment_document.word_count += len(segment["answer"])
|
||||
word_count_change += segment_document.word_count
|
||||
session.add(segment_document)
|
||||
document_segments.append(segment_document)
|
||||
segments_to_insert.append(str(segment)) # Cast to string if needed
|
||||
# update document word count
|
||||
dataset_document.word_count += word_count_change
|
||||
session.add(dataset_document)
|
||||
# add index to db
|
||||
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
|
||||
session.commit()
|
||||
|
||||
redis_client.setex(indexing_cache_key, 600, "completed")
|
||||
end_at = time.perf_counter()
|
||||
logging.info(
|
||||
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
|
||||
click.style(
|
||||
"Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logging.exception("Segments batch created index failed")
|
||||
|
|
Loading…
Reference in New Issue