clang/lib/StaticAnalyzer/Checkers/UninitializedObject/UninitializedObjectChecker.cpp

512 lines
17 KiB
C++

//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a checker that reports uninitialized fields in objects
// created after a constructor call.
//
// This checker has several options:
// - "Pedantic" (boolean). If its not set or is set to false, the checker
// won't emit warnings for objects that don't have at least one initialized
// field. This may be set with
//
// `-analyzer-config alpha.cplusplus.UninitializedObject:Pedantic=true`.
//
// - "NotesAsWarnings" (boolean). If set to true, the checker will emit a
// warning for each uninitalized field, as opposed to emitting one warning
// per constructor call, and listing the uninitialized fields that belongs
// to it in notes. Defaults to false.
//
// `-analyzer-config \
// alpha.cplusplus.UninitializedObject:NotesAsWarnings=true`.
//
// - "CheckPointeeInitialization" (boolean). If set to false, the checker will
// not analyze the pointee of pointer/reference fields, and will only check
// whether the object itself is initialized. Defaults to false.
//
// `-analyzer-config \
// alpha.cplusplus.UninitializedObject:CheckPointeeInitialization=true`.
//
// TODO: With some clever heuristics, some pointers should be dereferenced
// by default. For example, if the pointee is constructed within the
// constructor call, it's reasonable to say that no external object
// references it, and we wouldn't generate multiple report on the same
// pointee.
//
// To read about how the checker works, refer to the comments in
// UninitializedObject.h.
//
// Some of the logic is implemented in UninitializedPointee.cpp, to reduce the
// complexity of this file.
//
//===----------------------------------------------------------------------===//
#include "../ClangSACheckers.h"
#include "UninitializedObject.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
using namespace clang;
using namespace clang::ento;
namespace {
class UninitializedObjectChecker : public Checker<check::EndFunction> {
std::unique_ptr<BuiltinBug> BT_uninitField;
public:
// These fields will be initialized when registering the checker.
bool IsPedantic;
bool ShouldConvertNotesToWarnings;
bool CheckPointeeInitialization;
UninitializedObjectChecker()
: BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}
void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
};
/// A basic field type, that is not a pointer or a reference, it's dynamic and
/// static type is the same.
class RegularField final : public FieldNode {
public:
RegularField(const FieldRegion *FR) : FieldNode(FR) {}
virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
Out << "uninitialized field ";
}
virtual void printPrefix(llvm::raw_ostream &Out) const override {}
virtual void printNode(llvm::raw_ostream &Out) const override {
Out << getVariableName(getDecl());
}
virtual void printSeparator(llvm::raw_ostream &Out) const override {
Out << '.';
}
};
/// Represents that the FieldNode that comes after this is declared in a base
/// of the previous FieldNode. As such, this descendant doesn't wrap a
/// FieldRegion, and is purely a tool to describe a relation between two other
/// FieldRegion wrapping descendants.
class BaseClass final : public FieldNode {
const QualType BaseClassT;
public:
BaseClass(const QualType &T) : FieldNode(nullptr), BaseClassT(T) {
assert(!T.isNull());
assert(T->getAsCXXRecordDecl());
}
virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
llvm_unreachable("This node can never be the final node in the "
"fieldchain!");
}
virtual void printPrefix(llvm::raw_ostream &Out) const override {}
virtual void printNode(llvm::raw_ostream &Out) const override {
Out << BaseClassT->getAsCXXRecordDecl()->getName() << "::";
}
virtual void printSeparator(llvm::raw_ostream &Out) const override {}
virtual bool isBase() const override { return true; }
};
} // end of anonymous namespace
// Utility function declarations.
/// Returns the object that was constructed by CtorDecl, or None if that isn't
/// possible.
// TODO: Refactor this function so that it returns the constructed object's
// region.
static Optional<nonloc::LazyCompoundVal>
getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context);
/// Checks whether the object constructed by \p Ctor will be analyzed later
/// (e.g. if the object is a field of another object, in which case we'd check
/// it multiple times).
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
CheckerContext &Context);
//===----------------------------------------------------------------------===//
// Methods for UninitializedObjectChecker.
//===----------------------------------------------------------------------===//
void UninitializedObjectChecker::checkEndFunction(
const ReturnStmt *RS, CheckerContext &Context) const {
const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
Context.getLocationContext()->getDecl());
if (!CtorDecl)
return;
if (!CtorDecl->isUserProvided())
return;
if (CtorDecl->getParent()->isUnion())
return;
// This avoids essentially the same error being reported multiple times.
if (willObjectBeAnalyzedLater(CtorDecl, Context))
return;
Optional<nonloc::LazyCompoundVal> Object = getObjectVal(CtorDecl, Context);
if (!Object)
return;
FindUninitializedFields F(Context.getState(), Object->getRegion(),
CheckPointeeInitialization);
const UninitFieldMap &UninitFields = F.getUninitFields();
if (UninitFields.empty())
return;
// In non-pedantic mode, if Object's region doesn't contain a single
// initialized field, we'll assume that Object was intentionally left
// uninitialized.
if (!IsPedantic && !F.isAnyFieldInitialized())
return;
// There are uninitialized fields in the record.
ExplodedNode *Node = Context.generateNonFatalErrorNode(Context.getState());
if (!Node)
return;
PathDiagnosticLocation LocUsedForUniqueing;
const Stmt *CallSite = Context.getStackFrame()->getCallSite();
if (CallSite)
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
CallSite, Context.getSourceManager(), Node->getLocationContext());
// For Plist consumers that don't support notes just yet, we'll convert notes
// to warnings.
if (ShouldConvertNotesToWarnings) {
for (const auto &Pair : UninitFields) {
auto Report = llvm::make_unique<BugReport>(
*BT_uninitField, Pair.second, Node, LocUsedForUniqueing,
Node->getLocationContext()->getDecl());
Context.emitReport(std::move(Report));
}
return;
}
SmallString<100> WarningBuf;
llvm::raw_svector_ostream WarningOS(WarningBuf);
WarningOS << UninitFields.size() << " uninitialized field"
<< (UninitFields.size() == 1 ? "" : "s")
<< " at the end of the constructor call";
auto Report = llvm::make_unique<BugReport>(
*BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
Node->getLocationContext()->getDecl());
for (const auto &Pair : UninitFields) {
Report->addNote(Pair.second,
PathDiagnosticLocation::create(Pair.first->getDecl(),
Context.getSourceManager()));
}
Context.emitReport(std::move(Report));
}
//===----------------------------------------------------------------------===//
// Methods for FindUninitializedFields.
//===----------------------------------------------------------------------===//
FindUninitializedFields::FindUninitializedFields(
ProgramStateRef State, const TypedValueRegion *const R,
bool CheckPointeeInitialization)
: State(State), ObjectR(R),
CheckPointeeInitialization(CheckPointeeInitialization) {
isNonUnionUninit(ObjectR, FieldChainInfo(ChainFactory));
}
bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain) {
if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
Chain.getUninitRegion()->getDecl()->getLocation()))
return false;
UninitFieldMap::mapped_type NoteMsgBuf;
llvm::raw_svector_ostream OS(NoteMsgBuf);
Chain.printNoteMsg(OS);
return UninitFields
.insert(std::make_pair(Chain.getUninitRegion(), std::move(NoteMsgBuf)))
.second;
}
bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
FieldChainInfo LocalChain) {
assert(R->getValueType()->isRecordType() &&
!R->getValueType()->isUnionType() &&
"This method only checks non-union record objects!");
const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition();
if (!RD) {
IsAnyFieldInitialized = true;
return true;
}
bool ContainsUninitField = false;
// Are all of this non-union's fields initialized?
for (const FieldDecl *I : RD->fields()) {
const auto FieldVal =
State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
const auto *FR = FieldVal.getRegionAs<FieldRegion>();
QualType T = I->getType();
// If LocalChain already contains FR, then we encountered a cyclic
// reference. In this case, region FR is already under checking at an
// earlier node in the directed tree.
if (LocalChain.contains(FR))
return false;
if (T->isStructureOrClassType()) {
if (isNonUnionUninit(FR, LocalChain.add(RegularField(FR))))
ContainsUninitField = true;
continue;
}
if (T->isUnionType()) {
if (isUnionUninit(FR)) {
if (addFieldToUninits(LocalChain.add(RegularField(FR))))
ContainsUninitField = true;
} else
IsAnyFieldInitialized = true;
continue;
}
if (T->isArrayType()) {
IsAnyFieldInitialized = true;
continue;
}
if (isDereferencableType(T)) {
if (isDereferencableUninit(FR, LocalChain))
ContainsUninitField = true;
continue;
}
if (isPrimitiveType(T)) {
SVal V = State->getSVal(FieldVal);
if (isPrimitiveUninit(V)) {
if (addFieldToUninits(LocalChain.add(RegularField(FR))))
ContainsUninitField = true;
}
continue;
}
llvm_unreachable("All cases are handled!");
}
// Checking bases. The checker will regard inherited data members as direct
// fields.
const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if (!CXXRD)
return ContainsUninitField;
for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
const auto *BaseRegion = State->getLValue(BaseSpec, R)
.castAs<loc::MemRegionVal>()
.getRegionAs<TypedValueRegion>();
// If the head of the list is also a BaseClass, we'll overwrite it to avoid
// note messages like 'this->A::B::x'.
if (!LocalChain.isEmpty() && LocalChain.getHead().isBase()) {
if (isNonUnionUninit(BaseRegion, LocalChain.replaceHead(
BaseClass(BaseSpec.getType()))))
ContainsUninitField = true;
} else {
if (isNonUnionUninit(BaseRegion,
LocalChain.add(BaseClass(BaseSpec.getType()))))
ContainsUninitField = true;
}
}
return ContainsUninitField;
}
bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
assert(R->getValueType()->isUnionType() &&
"This method only checks union objects!");
// TODO: Implement support for union fields.
return false;
}
bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
if (V.isUndef())
return true;
IsAnyFieldInitialized = true;
return false;
}
//===----------------------------------------------------------------------===//
// Methods for FieldChainInfo.
//===----------------------------------------------------------------------===//
const FieldRegion *FieldChainInfo::getUninitRegion() const {
assert(!Chain.isEmpty() && "Empty fieldchain!");
// ImmutableList::getHead() isn't a const method, hence the not too nice
// implementation.
return (*Chain.begin()).getRegion();
}
bool FieldChainInfo::contains(const FieldRegion *FR) const {
for (const FieldNode &Node : Chain) {
if (Node.isSameRegion(FR))
return true;
}
return false;
}
/// Prints every element except the last to `Out`. Since ImmutableLists store
/// elements in reverse order, and have no reverse iterators, we use a
/// recursive function to print the fieldchain correctly. The last element in
/// the chain is to be printed by `FieldChainInfo::print`.
static void printTail(llvm::raw_ostream &Out,
const FieldChainInfo::FieldChainImpl *L);
// FIXME: This function constructs an incorrect string in the following case:
//
// struct Base { int x; };
// struct D1 : Base {}; struct D2 : Base {};
//
// struct MostDerived : D1, D2 {
// MostDerived() {}
// }
//
// A call to MostDerived::MostDerived() will cause two notes that say
// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
// we need an explicit namespace resolution whether the uninit field was
// 'D1::x' or 'D2::x'.
void FieldChainInfo::printNoteMsg(llvm::raw_ostream &Out) const {
if (Chain.isEmpty())
return;
const FieldChainImpl *L = Chain.getInternalPointer();
const FieldNode &LastField = L->getHead();
LastField.printNoteMsg(Out);
Out << '\'';
for (const FieldNode &Node : Chain)
Node.printPrefix(Out);
Out << "this->";
printTail(Out, L->getTail());
LastField.printNode(Out);
Out << '\'';
}
static void printTail(llvm::raw_ostream &Out,
const FieldChainInfo::FieldChainImpl *L) {
if (!L)
return;
printTail(Out, L->getTail());
L->getHead().printNode(Out);
L->getHead().printSeparator(Out);
}
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
static Optional<nonloc::LazyCompoundVal>
getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context) {
Loc ThisLoc = Context.getSValBuilder().getCXXThis(CtorDecl->getParent(),
Context.getStackFrame());
// Getting the value for 'this'.
SVal This = Context.getState()->getSVal(ThisLoc);
// Getting the value for '*this'.
SVal Object = Context.getState()->getSVal(This.castAs<Loc>());
return Object.getAs<nonloc::LazyCompoundVal>();
}
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
CheckerContext &Context) {
Optional<nonloc::LazyCompoundVal> CurrentObject = getObjectVal(Ctor, Context);
if (!CurrentObject)
return false;
const LocationContext *LC = Context.getLocationContext();
while ((LC = LC->getParent())) {
// If \p Ctor was called by another constructor.
const auto *OtherCtor = dyn_cast<CXXConstructorDecl>(LC->getDecl());
if (!OtherCtor)
continue;
Optional<nonloc::LazyCompoundVal> OtherObject =
getObjectVal(OtherCtor, Context);
if (!OtherObject)
continue;
// If the CurrentObject is a subregion of OtherObject, it will be analyzed
// during the analysis of OtherObject.
if (CurrentObject->getRegion()->isSubRegionOf(OtherObject->getRegion()))
return true;
}
return false;
}
std::string clang::ento::getVariableName(const FieldDecl *Field) {
// If Field is a captured lambda variable, Field->getName() will return with
// an empty string. We can however acquire it's name from the lambda's
// captures.
const auto *CXXParent = dyn_cast<CXXRecordDecl>(Field->getParent());
if (CXXParent && CXXParent->isLambda()) {
assert(CXXParent->captures_begin());
auto It = CXXParent->captures_begin() + Field->getFieldIndex();
if (It->capturesVariable())
return llvm::Twine("/*captured variable*/" +
It->getCapturedVar()->getName())
.str();
if (It->capturesThis())
return "/*'this' capture*/";
llvm_unreachable("No other capture type is expected!");
}
return Field->getName();
}
void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();
Chk->IsPedantic = Mgr.getAnalyzerOptions().getBooleanOption(
"Pedantic", /*DefaultVal*/ false, Chk);
Chk->ShouldConvertNotesToWarnings = Mgr.getAnalyzerOptions().getBooleanOption(
"NotesAsWarnings", /*DefaultVal*/ false, Chk);
Chk->CheckPointeeInitialization = Mgr.getAnalyzerOptions().getBooleanOption(
"CheckPointeeInitialization", /*DefaultVal*/ false, Chk);
}