Types can be classified as being zero-initializable or
non-zero-initializable. We used to classify array types by giving them
the classification of their base element type. However, incomplete
array types are never initialized directly and thus are always
zero-initializable.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@238256 91177308-0d34-0410-b5e6-96231b3b80d8
The MS ABI utilizes a compiler generated function called the "vector
constructor iterator" to construct arrays of objects with
non-trivial constructors/destructors. For this to work, the constructor
must follow a specific calling convention. A thunk must be created if
the default constructor has default arguments, is variadic or is
otherwise incompatible. This thunk is called the default constructor
closure.
N.B. Default constructor closures are only generated if the default
constructor is exported because clang itself does not utilize vector
constructor iterators. Failing to export the default constructor
closure will result in link/load failure if a translation unit compiled
with MSVC is on the import side.
Differential Revision: http://reviews.llvm.org/D8331
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@232229 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for copy-constructor closures. These are generated
when the C++ runtime has to call a copy-constructor with a particular
calling convention or with default arguments substituted in to the call.
Because the runtime has no mechanism to call the function with a
different calling convention or know-how to evaluate the default
arguments at run-time, we create a thunk which will do all the
appropriate work and package it in a way the runtime can use.
Differential Revision: http://reviews.llvm.org/D8225
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@231952 91177308-0d34-0410-b5e6-96231b3b80d8
The extension has the following syntax:
__builtin_call_with_static_chain(Call, Chain)
where Call must be a function call expression and Chain must be of pointer type
This extension performs a function call Call with a static chain pointer
Chain passed to the callee in a designated register. This is useful for
calling foreign language functions whose ABI uses static chain pointers
(e.g. to implement closures).
Differential Revision: http://reviews.llvm.org/D6332
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@224167 91177308-0d34-0410-b5e6-96231b3b80d8
This is the last piece of CGCall code that had implicit assumptions about
the order in which Clang arguments are translated to LLVM ones (positions
of inalloca argument, sret, this, padding arguments etc.) Now all of
this data is encapsulated in ClangToLLVMArgsMapping. If this information
would be required somewhere else, this class can be moved to a separate
header or pulled into CGFunctionInfo.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@218634 91177308-0d34-0410-b5e6-96231b3b80d8
There are situations when clang knows that the C1 and C2 constructors
or the D1 and D2 destructors are identical. We already optimize some
of these cases, but cannot optimize it when the GlobalValue is
weak_odr.
The problem with weak_odr is that an old TU seeing the same code will
have a C1 and a C2 comdat with the corresponding symbols. We cannot
suddenly start putting the C2 symbol in the C1 comdat as we cannot
guarantee that the linker will not pick a .o with only C1 in it.
The solution implemented by GCC is to expand the ABI to have a comdat
whose name uses a C5/D5 suffix and always has both symbols. That is
what this patch implements.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@217874 91177308-0d34-0410-b5e6-96231b3b80d8
There were code paths that are duplicated for constructors and destructors just
because we have both CXXCtorType and CXXDtorsTypes.
This patch introduces an unified enum and reduces code deplication a bit.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@217383 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids encoding information about the function prototype into the
thunk at the cost of some function prototype bitcast gymnastics.
Fixes PR20653.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@216782 91177308-0d34-0410-b5e6-96231b3b80d8
When a non-trivial parameter is present, clang now gathers up all the
parameters that lack inreg and puts them into a packed struct. MSVC
always aligns each parameter to 4 bytes and no more, so this is a pretty
simple struct to lay out.
On win64, non-trivial records are passed indirectly. Prior to this
change, clang was incorrectly using byval on win64.
I'm able to self-host a working clang with this change and additional
LLVM patches.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2636
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@200597 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR15768, where the sret parameter and the 'this' parameter
are in the wrong order.
Instance methods compiled by MSVC never return records in registers,
they always return indirectly through an sret pointer. That sret
pointer always comes after the 'this' parameter, for both __cdecl and
__thiscall methods.
Unfortunately, the same is true for other calling conventions, so we'll
have to change the overall approach here relatively soon.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2664
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@200587 91177308-0d34-0410-b5e6-96231b3b80d8
CodeGenTypes.h instantiates llvm::FoldingSet<> with CGFunctionInfo,
and VC++ doesn't like the static_cast from FoldingSetImpl::Node* to
CGFunctionInfo* since it hasn't seen the definition of CGFunctionInfo
and that it inherits from FoldingSetImpl::Node.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@193722 91177308-0d34-0410-b5e6-96231b3b80d8
We were emitting calls to blocks as if all arguments were
required --- i.e. with signature (A,B,C,D,...) rather than
(A,B,...). This patch fixes that and accounts for the
implicit block-context argument as a required argument.
In addition, this patch changes the function type under which
we call unprototyped functions on platforms like x86-64 that
guarantee compatibility of variadic functions with unprototyped
function types; previously we would always call such functions
under the LLVM type T (...)*, but now we will call them under
the type T (A,B,C,D,...)*. This last change should have no
material effect except for making the type conventions more
explicit; it was a side-effect of the most convenient implementation.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@169588 91177308-0d34-0410-b5e6-96231b3b80d8
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@169237 91177308-0d34-0410-b5e6-96231b3b80d8
in the ABI arrangement, and leave a hook behind so that we can easily
tweak CCs on platforms that use different CCs by default for C++
instance methods.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@159894 91177308-0d34-0410-b5e6-96231b3b80d8
optional argument passed through the variadic ellipsis)
potentially affects how we need to lower it. Propagate
this information down to the various getFunctionInfo(...)
overloads on CodeGenTypes. Furthermore, rename those
overloads to clarify their distinct purposes, and make
sure we're calling the right one in the right place.
This has a nice side-effect of making it easier to construct
a function type, since the 'variadic' bit is no longer
separable.
This shouldn't really change anything for our existing
platforms, with one minor exception --- we should now call
variadic ObjC methods with the ... in the "right place"
(see the test case), which I guess matters for anyone
running GNUStep on MIPS. Mostly it's just a substantial
clean-up.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@150788 91177308-0d34-0410-b5e6-96231b3b80d8
types. Fore xample, we used to lower:
struct bar { int a; };
struct foo {
void (*FP)(struct bar);
} G;
to:
%struct.foo = type { {}* }
since the function pointer would cause recursive translation of bar and
we didn't know if that would get us into trouble. We are now smart enough
to know that it is fine, so we get this type instead:
%struct.foo = type { void (i32)* }
Codegen still needs to be prepared for uncooperative types at any place,
which is why I let the maximally uncooperative code sit around for awhile to
help shake out the bugs.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@135244 91177308-0d34-0410-b5e6-96231b3b80d8
caused us to skip layout out a function accurately. If
so, flush the type cache for both the function and struct
case to ensure that any pointers to the functions get
recomputed. This is overconservative, but with this patch
clang can build itself again.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@134863 91177308-0d34-0410-b5e6-96231b3b80d8
it is a predicate, not an action. Change the return type to be a bool,
not the incomplete member. Enhace it to detect the recursive compilation
case, allowing us to compile Eli's testcase on llvmdev:
struct T {
struct T (*p)(void);
} t;
into:
%struct.T = type { {}* }
@t = common global %struct.T zeroinitializer, align 8
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@134853 91177308-0d34-0410-b5e6-96231b3b80d8
simplify the logic of initializing function parameters so that we don't need
both a variable declaration and a type in FunctionArgList. This also means
that we need to propagate the CGFunctionInfo down in a lot of places rather
than recalculating it from the FAL. There's more we can do to eliminate
redundancy here, and I've left FIXMEs behind to do it.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@127314 91177308-0d34-0410-b5e6-96231b3b80d8
Make CGT defer to the ABI on all member pointer types.
This requires giving CGT a handle to the ABI.
It's way easier to make that work if we avoid lazily creating the ABI.
Make it so.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@111786 91177308-0d34-0410-b5e6-96231b3b80d8
have a "coerce to" type which often matches the default lowering of Clang
type to LLVM IR type, but the coerce case can be handled by making them
not be the same.
This simplifies things and fixes issues where X86-64 abi lowering would
return coerce after making preferred types exactly match up. This caused
us to compile:
typedef float v4f32 __attribute__((__vector_size__(16)));
v4f32 foo(v4f32 X) {
return X+X;
}
into this code at -O0:
define <4 x float> @foo(<4 x float> %X.coerce) nounwind {
entry:
%retval = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%coerce = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=2]
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X.coerce, <4 x float>* %coerce
%X = load <4 x float>* %coerce ; <<4 x float>> [#uses=1]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
store <4 x float> %add, <4 x float>* %retval
%0 = load <4 x float>* %retval ; <<4 x float>> [#uses=1]
ret <4 x float> %0
}
Now we get:
define <4 x float> @foo(<4 x float> %X) nounwind {
entry:
%X.addr = alloca <4 x float>, align 16 ; <<4 x float>*> [#uses=3]
store <4 x float> %X, <4 x float>* %X.addr
%tmp = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%tmp1 = load <4 x float>* %X.addr ; <<4 x float>> [#uses=1]
%add = fadd <4 x float> %tmp, %tmp1 ; <<4 x float>> [#uses=1]
ret <4 x float> %add
}
This implements rdar://8248065
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@109733 91177308-0d34-0410-b5e6-96231b3b80d8
r107173, "fix PR7519: after thrashing around and remembering how all this stuff"
r107216, "fix PR7523, which was caused by the ABI code calling ConvertType instead"
This includes a fix to make ConvertTypeForMem handle the "recursive" case, and call
it as such when lowering function types which have an indirect result.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@107310 91177308-0d34-0410-b5e6-96231b3b80d8