Since The type no longer contains the 'next' item anymore, it isn't a list,
so rename it to ParsedAttr to be more accurate.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@337005 91177308-0d34-0410-b5e6-96231b3b80d8
Basically, "AttributeList" loses all list-like mechanisms, ParsedAttributes is
switched to use a TinyPtrVector (and a ParsedAttributesView is created to
have a non-allocating attributes list). DeclaratorChunk gets the later kind,
Declarator/DeclSpec keep ParsedAttributes.
Iterators are added to the ParsedAttribute types so that for-loops work.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@336945 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Generalize the creation of Decl nodes during Import. With this patch we do the
same things after and before a new AST node is created (::Create) The import
logic should be really simple, we create the node, then we mark that as
imported, then we recursively import the parts for that node and then set them
on that node. However, the AST is actually a graph, so we have to handle
circles. If we mark something as imported (`MapImported()`) then we return with
the corresponding `To` decl whenever we want to import that node again, this way
circles are handled. In order to make this algorithm work we must ensure
things, which are handled in the generic CreateDecl<> template:
* There are no `Import()` calls in between any node creation (::Create)
and the `MapImported()` call.
* Before actually creating an AST node (::Create), we must check if
the Node had been imported already, if yes then return with that one.
One very important case for this is connected to templates: we may
start an import both from the templated decl of a template and from
the template itself.
Now, the virtual `Imported` function is called in `ASTImporter::Impor(Decl *)`,
but only once, when the `Decl` is imported. One point of this refactor is to
separate responsibilities. The original `Imported()` had 3 responsibilities:
- notify subclasses when an import happened
- register the decl into `ImportedDecls`
- initialise the Decl (set attributes, etc)
Now all of these are in separate functions:
- `Imported`
- `MapImported`
- `InitializeImportedDecl`
I tried to check all the clients, I executed tests for `ExternalASTMerger.cpp`
and some unittests for lldb.
Reviewers: a.sidorin, balazske, xazax.hun, r.stahl
Subscribers: rnkovacs, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D47632
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@336896 91177308-0d34-0410-b5e6-96231b3b80d8
The member init list for the sole constructor for CodeGenFunction
has gotten out of hand, so this patch moves the non-parameter-dependent
initializations into the member value inits.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@336726 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The comment with the OpenCL clause about this clearly
says: "No type shall be qualified by qualifiers for
two or more different address spaces."
This must mean that two or more qualifiers for the
_same_ address space is allowed. However, it is
likely unintended by the programmer, so emit a
warning.
For dependent address space types, reject them like
before since we cannot know what the address space
will be.
Patch by Bevin Hansson (ebevhan).
Reviewers: Anastasia
Reviewed By: Anastasia
Subscribers: bader, cfe-commits
Differential Revision: https://reviews.llvm.org/D47630
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@335103 91177308-0d34-0410-b5e6-96231b3b80d8
This diff includes changes for the remaining _Fract and _Sat fixed point types.
```
signed short _Fract s_short_fract;
signed _Fract s_fract;
signed long _Fract s_long_fract;
unsigned short _Fract u_short_fract;
unsigned _Fract u_fract;
unsigned long _Fract u_long_fract;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
short _Fract short_fract;
_Fract fract;
long _Fract long_fract;
// Saturated fixed point types
_Sat signed short _Accum sat_s_short_accum;
_Sat signed _Accum sat_s_accum;
_Sat signed long _Accum sat_s_long_accum;
_Sat unsigned short _Accum sat_u_short_accum;
_Sat unsigned _Accum sat_u_accum;
_Sat unsigned long _Accum sat_u_long_accum;
_Sat signed short _Fract sat_s_short_fract;
_Sat signed _Fract sat_s_fract;
_Sat signed long _Fract sat_s_long_fract;
_Sat unsigned short _Fract sat_u_short_fract;
_Sat unsigned _Fract sat_u_fract;
_Sat unsigned long _Fract sat_u_long_fract;
// Aliased saturated fixed point types
_Sat short _Accum sat_short_accum;
_Sat _Accum sat_accum;
_Sat long _Accum sat_long_accum;
_Sat short _Fract sat_short_fract;
_Sat _Fract sat_fract;
_Sat long _Fract sat_long_fract;
```
This diff only allows for declaration of these fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches.
Differential Revision: https://reviews.llvm.org/D46911
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@334718 91177308-0d34-0410-b5e6-96231b3b80d8
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent _Fract types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Fixed the test that was failing by not checking for dso_local on some
targets.
Differential Revision: https://reviews.llvm.org/D46084
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@333923 91177308-0d34-0410-b5e6-96231b3b80d8
```
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
```
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent `_Fract` types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Differential Revision: https://reviews.llvm.org/D46084
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@333814 91177308-0d34-0410-b5e6-96231b3b80d8
Ensure latest MPT decl has a MSInheritanceAttr when instantiating
templates, to avoid null MSInheritanceAttr deref in
CXXRecordDecl::getMSInheritanceModel().
See PR#37399 for repo / details.
Patch by Andrew Rogers!
Differential Revision: https://reviews.llvm.org/D46664
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@333680 91177308-0d34-0410-b5e6-96231b3b80d8
Clang often tries to create implicit module import for error recovery,
which does a great job helping out with diagnostics. However, sometimes
clang does not have enough information given that it's using an invalid
context to move on. Be more strict in those cases to avoid crashes.
We hit crash on invalids because of this but unfortunately there are no
testcases and I couldn't manage to create one. The crashtrace however
indicates pretty clear why it's happening.
rdar://problem/39313933
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@332491 91177308-0d34-0410-b5e6-96231b3b80d8
We already warned about the lambda, and we don't have a source location for the imagined "auto" anyway.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@332401 91177308-0d34-0410-b5e6-96231b3b80d8
For example, given:
void fn() {
struct T *p0;
struct T { int i; } *p1;
}
-ast-print produced:
void fn() {
struct T { int i; } *p0;
struct T { int i; } *p1;
}
Compiling that fails with a redefinition error.
Given:
void fn() {
struct T *p0;
struct __attribute__((deprecated)) T *p1;
}
-ast-print dropped the attribute.
Details:
For a tag specifier (that is, struct/union/class/enum used as a type
specifier in a declaration) that was also a tag declaration (that is,
first occurrence of the tag) or tag redeclaration (that is, later
occurrence that specifies attributes or a member list), clang printed
the tag specifier as either (1) the full tag definition if one
existed, or (2) the first tag declaration otherwise. Redefinition
errors were sometimes introduced, as in the first example above. Even
when that was impossible because no member list was ever specified,
attributes were sometimes lost, thus changing semantics and
diagnostics, as in the second example above.
This patch fixes a major culprit for these problems. It does so by
creating an ElaboratedType with a new OwnedDecl member wherever an
occurrence of a tag type is a (re)declaration of that tag type.
PrintingPolicy's IncludeTagDefinition used to trigger printing of the
member list, attributes, etc. for a tag specifier by using a tag
(re)declaration selected as described above. Now, it triggers the
same thing except it uses the tag (re)declaration stored in the
OwnedDecl. Of course, other tooling can now make use of the new
OwnedDecl as well.
Also, to be more faithful to the original source, this patch
suppresses printing of attributes inherited from previous
declarations.
Reviewed by: rsmith, aaron.ballman
Differential Revision: https://reviews.llvm.org/D45463
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@332281 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331834 91177308-0d34-0410-b5e6-96231b3b80d8
Calling convention attributes notionally appertain to the function type -- they modify the mangling of the function, change the behavior of assignment operations, etc. This commit allows the calling convention attributes to be written in the type position as well as the declaration position.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331459 91177308-0d34-0410-b5e6-96231b3b80d8
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331428 91177308-0d34-0410-b5e6-96231b3b80d8
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331244 91177308-0d34-0410-b5e6-96231b3b80d8
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331155 91177308-0d34-0410-b5e6-96231b3b80d8
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@329399 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r328795 which introduced an issue with referencing __global__
function templates. More details in the original review D44747.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@329099 91177308-0d34-0410-b5e6-96231b3b80d8
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@328636 91177308-0d34-0410-b5e6-96231b3b80d8
The patch adds nocf_check target independent attribute for disabling checks that were enabled by cf-protection flag.
The attribute can be appertained to functions and function pointers.
Attribute name follows GCC's similar attribute name.
Differential Revision: https://reviews.llvm.org/D41880
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@327768 91177308-0d34-0410-b5e6-96231b3b80d8
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@326416 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, we would not properly parse these types within template arguments
(for non-type template parameters), and in tentative parses. Fixing both of
these essentially requires that we parse deduced template specialization types
as types in all contexts, even in template argument lists -- in particular,
tentative parsing may look ahead and annotate a deduced template specialization
type before we figure out that we're actually supposed to treat the tokens as a
template-name. We deal with this by simply permitting deduced template
specialization types when parsing template arguments, and converting them to
template template arguments.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@326299 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
According to the C++11 standard [dcl.type.simple]p4:
The type denoted by decltype(e) is defined as follows:
- if e is an unparenthesized id-expression or an unparenthesized
class member access (5.2.5), decltype(e) is the type of the entity
named by e.
Currently Clang handles the 'member access' case incorrectly for
static data members (decltype returns T& instead of T). This patch
fixes the issue.
Reviewers: faisalv, rsmith, rogfer01
Reviewed By: rogfer01
Subscribers: rogfer01, cfe-commits
Differential Revision: https://reviews.llvm.org/D42969
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@325117 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a base-class called TemplateInstantiationObserver which gets
notified whenever a template instantiation is entered or exited during
semantic analysis. This is a base class used to implement the template
profiling and debugging tool called
Templight (https://github.com/mikael-s-persson/templight).
The patch also makes a few more changes:
* ActiveTemplateInstantiation class is moved out of the Sema class (so it can be used with inclusion of Sema.h).
* CreateFrontendAction function in front-end utilities is given external linkage (not longer a hidden static function).
* TemplateInstObserverChain data member added to Sema class to hold the list of template-inst observers.
* Notifications to the template-inst observer are added at the key places where templates are instantiated.
Patch by: Abel Sinkovics!
Differential Revision: https://reviews.llvm.org/D5767
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@324808 91177308-0d34-0410-b5e6-96231b3b80d8
The 'trivial_abi' attribute can be applied to a C++ class, struct, or
union. It makes special functions of the annotated class (the destructor
and copy/move constructors) to be trivial for the purpose of calls and,
as a result, enables the annotated class or containing classes to be
passed or returned using the C ABI for the underlying type.
When a type that is considered trivial for the purpose of calls despite
having a non-trivial destructor (which happens only when the class type
or one of its subobjects is a 'trivial_abi' class) is passed to a
function, the callee is responsible for destroying the object.
For more background, see the discussions that took place on the mailing
list:
http://lists.llvm.org/pipermail/cfe-dev/2017-November/055955.htmlhttp://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180101/thread.html#214043
rdar://problem/35204524
Differential Revision: https://reviews.llvm.org/D41039
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@324269 91177308-0d34-0410-b5e6-96231b3b80d8
- reverts r321622, r321625, and r321626.
- the use of bit-fields is still resulting in warnings - even though we can use static-asserts to harden the code and ensure the bit-fields are wide enough. The bots still complain of warnings being seen.
- to silence the warnings requires specifying the bit-fields with the underlying enum type (as opposed to the enum type itself), which then requires lots of unnecessary static casts of each enumerator within DeclSpec to the underlying-type, which even though could be seen as implementation details, it does hamper readability - and given the additional litterings, makes me question the value of the change.
So in short - I give up (for now at least).
Sorry about the noise.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@321628 91177308-0d34-0410-b5e6-96231b3b80d8
- the enum changes to TypeSpecifierType are breaking some tests - and will require a more careful integration.
Sorry about rushing these changes - thought I could sneak them in prior to heading out for new years ;)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@321616 91177308-0d34-0410-b5e6-96231b3b80d8
This is a slightly odd construct (it's more common to see "A (::B)()") but can
happen in friend declarations, and the parens are not redundant as they prevent
the :: binding to the left.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@321318 91177308-0d34-0410-b5e6-96231b3b80d8
update the type from the definition even if we didn't instantiate a definition.
We may have instantiated the definition in an earlier stage of semantic
analysis, after creating the DeclRefExpr but before we reach a point where a
complete expression type is required.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@320709 91177308-0d34-0410-b5e6-96231b3b80d8
While here, split the "point of instantiation changed" notification out from
it; these two really are orthogonal changes.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@319727 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes erroneously reported CUDA compilation errors
in host-side code during device-side compilation.
I've also restricted OpenMP-specific checks to trigger only
if we're compiling with OpenMP enabled.
Differential Revision: https://reviews.llvm.org/D40275
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@319201 91177308-0d34-0410-b5e6-96231b3b80d8
Some target devices (e.g. Nvidia GPUs) don't support dynamic stack
allocation and hence no VLAs. Print errors with description instead
of failing in the backend or generating code that doesn't work.
This patch handles explicit uses of VLAs (local variable in target
or declare target region) or implicitly generated (private) VLAs
for reductions on VLAs or on array sections with non-constant size.
Differential Revision: https://reviews.llvm.org/D39505
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@318601 91177308-0d34-0410-b5e6-96231b3b80d8