Also, allow CallOrObjCMessage to wrap a CXXConstructExpr as well.
Finally, this allows us to remove the clunky whitelisting system from CFRefCount/RetainReleaseChecker. Slight regression due to CXXNewExprs not yet being handled in post-statement callbacks (PR forthcoming).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@138716 91177308-0d34-0410-b5e6-96231b3b80d8
Having a notion of an actual ProgramPointTag will aid in introspection of the analyzer's behavior.
For example, the GraphViz output of the analyzer will pretty-print the tags in a useful manner.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@137529 91177308-0d34-0410-b5e6-96231b3b80d8
The motivation of this large change is to drastically simplify the logic in ExprEngine going forward.
Some fallout is that the output of some BugReporterVisitors is not as accurate as before; those will
need to be fixed over time. There is also some possible performance regression as RemoveDeadBindings
will be called frequently; this can also be improved over time.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@136419 91177308-0d34-0410-b5e6-96231b3b80d8
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@135243 91177308-0d34-0410-b5e6-96231b3b80d8
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@134605 91177308-0d34-0410-b5e6-96231b3b80d8
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@133521 91177308-0d34-0410-b5e6-96231b3b80d8
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@133103 91177308-0d34-0410-b5e6-96231b3b80d8
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@132612 91177308-0d34-0410-b5e6-96231b3b80d8
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@131735 91177308-0d34-0410-b5e6-96231b3b80d8
Patch authored by Sohail Somani.
Provide parsing and AST support for Windows structured exception handling.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@130366 91177308-0d34-0410-b5e6-96231b3b80d8
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@130351 91177308-0d34-0410-b5e6-96231b3b80d8
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@130122 91177308-0d34-0410-b5e6-96231b3b80d8
As an extension, generic selection support has been added for all
supported languages. The syntax is the same as for C1X.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@129554 91177308-0d34-0410-b5e6-96231b3b80d8
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@129331 91177308-0d34-0410-b5e6-96231b3b80d8
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@129256 91177308-0d34-0410-b5e6-96231b3b80d8
to be reworked to model CallEnter/CallExit (just like all other calls). For now, treat constructors mostly
like other function calls, making the analysis of C++ code just a little more useful.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@129166 91177308-0d34-0410-b5e6-96231b3b80d8
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@129065 91177308-0d34-0410-b5e6-96231b3b80d8
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@128858 91177308-0d34-0410-b5e6-96231b3b80d8
from how we process ordinary function calls, had a tremendous about of redundancy, and relied
strictly on inlining behavior (which was incomplete) to provide semantics instead of falling
back to the conservative analysis we use for C functions. This is a significant step into
making C++ analyzer support more useful.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@128557 91177308-0d34-0410-b5e6-96231b3b80d8
- Also, consoldiate getDtorKind() and getKind() into one "kind".
- Add empty getDestructorDecl() method to CFGImplicitDtor.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@126738 91177308-0d34-0410-b5e6-96231b3b80d8