This reinstates r337627, reverted in r337671, with a fix to correctly
handle the lvalueness of array subscript expressions on pointers.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@337726 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r337627.
After the change, clang started producing invalid warning on the following code:
struct foo {
foo(char *x) : x_(&x[10]) {}
private:
char *x_;
};
1.cpp:2:21: warning: initializing pointer member 'x_' with the stack address of parameter 'x' [-Wdangling-field]
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@337671 91177308-0d34-0410-b5e6-96231b3b80d8
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
This reinstates r337226, reverted in r337255, with a fix for the
InitializedEntity alignment problem that was breaking ARM buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@337329 91177308-0d34-0410-b5e6-96231b3b80d8
This change breaks on ARM because pointers to clang::InitializedEntity are only
4 byte aligned and do not have 3 bits to store values. A possible solution
would be to change the fields in clang::InitializedEntity to enforce a bigger
alignment requirement.
The error message is
llvm/include/llvm/ADT/PointerIntPair.h:132:3: error: static_assert failed "PointerIntPair with integer size too large for pointer"
static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
include/llvm/ADT/PointerIntPair.h:73:13: note: in instantiation of template class 'llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> >' requested here
Value = Info::updateInt(Info::updatePointer(0, PtrVal),
llvm/include/llvm/ADT/PointerIntPair.h:51:5: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::setPointerAndInt' requested here
setPointerAndInt(PtrVal, IntVal);
^
llvm/tools/clang/lib/Sema/SemaInit.cpp:6237:12: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::PointerIntPair' requested here
return {Entity, LK_Extended};
Full log here:
http://lab.llvm.org:8011/builders/clang-cmake-armv7-global-isel/builds/1330http://lab.llvm.org:8011/builders/clang-cmake-armv7-full/builds/1394
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@337255 91177308-0d34-0410-b5e6-96231b3b80d8
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@337226 91177308-0d34-0410-b5e6-96231b3b80d8
Diagnostics for narrowing conversions in initializer lists are currently
DefaultIgnored in Microsoft mode. But MSVC 2015 did add warnings about
narrowing conversions (C2397), so clang-cl can remove its special case code if
MSCompatibilityVersion is new enough.
(In MSVC, C2397 is just a warning and in clang it's default-mapped to an error,
but it can be remapped, and disabled with -Wno-c++11-narrowing, so that should
be fine.)
Fixes PR37314.
https://reviews.llvm.org/D48296
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@335082 91177308-0d34-0410-b5e6-96231b3b80d8
It caused asserts, see PR37560.
> Use zeroinitializer for (trailing zero portion of) large array initializers
> more reliably.
>
> Clang has two different ways it emits array constants (from InitListExprs and
> from APValues), and both had some ability to emit zeroinitializer, but neither
> was able to catch all cases where we could use zeroinitializer reliably. In
> particular, emitting from an APValue would fail to notice if all the explicit
> array elements happened to be zero. In addition, for large arrays where only an
> initial portion has an explicit initializer, we would emit the complete
> initializer (which could be huge) rather than emitting only the non-zero
> portion. With this change, when the element would have a suffix of more than 8
> zero elements, we emit the array constant as a packed struct of its initial
> portion followed by a zeroinitializer constant for the trailing zero portion.
>
> In passing, I found a bug where SemaInit would sometimes walk the entire array
> when checking an initializer that only covers the first few elements; that's
> fixed here to unblock testing of the rest.
>
> Differential Revision: https://reviews.llvm.org/D47166
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@333067 91177308-0d34-0410-b5e6-96231b3b80d8
more reliably.
Clang has two different ways it emits array constants (from InitListExprs and
from APValues), and both had some ability to emit zeroinitializer, but neither
was able to catch all cases where we could use zeroinitializer reliably. In
particular, emitting from an APValue would fail to notice if all the explicit
array elements happened to be zero. In addition, for large arrays where only an
initial portion has an explicit initializer, we would emit the complete
initializer (which could be huge) rather than emitting only the non-zero
portion. With this change, when the element would have a suffix of more than 8
zero elements, we emit the array constant as a packed struct of its initial
portion followed by a zeroinitializer constant for the trailing zero portion.
In passing, I found a bug where SemaInit would sometimes walk the entire array
when checking an initializer that only covers the first few elements; that's
fixed here to unblock testing of the rest.
Differential Revision: https://reviews.llvm.org/D47166
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@333044 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331834 91177308-0d34-0410-b5e6-96231b3b80d8
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331244 91177308-0d34-0410-b5e6-96231b3b80d8
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@331155 91177308-0d34-0410-b5e6-96231b3b80d8
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@329399 91177308-0d34-0410-b5e6-96231b3b80d8
When we synthesize an implicit inner initializer list when analyzing an outer
initializer list, we add it to the outer list immediately, and then fill in the
inner list. This gives the outer list no chance to update its *-dependence bits
with those of the completed inner list. To fix this, re-add the inner list to
the outer list once it's completed.
Note that we do not recompute the *-dependence bits from scratch when we
complete an outer list; this would give the wrong result for the case where a
designated initializer overwrites a dependent initializer with a non-dependent
one. The resulting list in that case should still be dependent, even though all
traces of the dependence were removed from the semantic form.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@324537 91177308-0d34-0410-b5e6-96231b3b80d8
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@322729 91177308-0d34-0410-b5e6-96231b3b80d8
In C++, such initialization of std::array<T, N> types is guaranteed to work by
the standard, is completely idiomatic, and the "suggested" alternative from
Clang was technically invalid.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@314838 91177308-0d34-0410-b5e6-96231b3b80d8
When selecting constructors for initializing an object of type T from a single
expression of class type U, also consider conversion functions of U that
convert to T (rather than modeling such conversions as calling a conversion
function and then calling a constructor).
This approach is proposed as the resolution for the defect, and is also already
implemented by GCC.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@314231 91177308-0d34-0410-b5e6-96231b3b80d8
that element's type is (or is derived from) a specialization of the deduced
template, skip the std::initializer_list special case.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@312703 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes a bug that's tracked by PR 10758 and duplicates like PR 30343.
The bug causes clang to crash with a stack overflow while recursing infinitely
trying to perform copy-initialization on a type without a copy constructor but
with a constructor that accepts another type that can be constructed using the
original type.
The commit fixes this bug by detecting the recursive behavior and failing
correctly with an appropriate error message. It also tries to provide a
meaningful diagnostic note about the constructor which leads to this behavior.
rdar://28483944
Differential Revision: https://reviews.llvm.org/D25051
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@303156 91177308-0d34-0410-b5e6-96231b3b80d8
lambda capture used by the created block
The commit r288866 introduced guaranteed copy elision to C++ 17. This
unfortunately broke the lambda to block conversion in C++17 (the compiler
crashes when performing IRGen). This commit fixes the conversion by avoiding
copy elision for the capture that captures the lambda that's used in the block
created by the lambda to block conversion process.
rdar://31385153
Differential Revision: https://reviews.llvm.org/D31669
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@299646 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I saw the same changes in the following review: https://reviews.llvm.org/D17438
I don't know in that way I could determine that atomic variable was initialized by macro ATOMIC_VAR_INIT. Anyway I added check that atomic variables can be initialize only in global scope.
I think that we can discuss this change.
Reviewers: Anastasia, cfe-commits
Reviewed By: Anastasia
Subscribers: bader, yaxunl
Differential Revision: https://reviews.llvm.org/D30643
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@299537 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: After examining the remaining uses of LangOptions.ObjCAutoRefCount, found a some additional places to also check for ObjCWeak not covered by previous test cases. Added a test file to verify all the code paths that were changed.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31007
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@299015 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes a crash on initialization of a reference from ({}) during
template instantiation and incidentally improves diagnostics.
This reverts a prior attempt to handle this in r286721. Instead, we teach the
initialization code that initialization cannot be performed if a source type
is required and the initializer is an initializer list (which is not an
expression and does not have a type), and likewise for function-style cast
expressions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@298676 91177308-0d34-0410-b5e6-96231b3b80d8
instantiation.
In preparation for converting the template stack to a more general context
stack (so we can include context notes for other kinds of context).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@295686 91177308-0d34-0410-b5e6-96231b3b80d8
After r264564, we allowed direct-list-initialization of an enum from an
integral value in C++1z mode, so long as that value can convert to the
enum's underlying type.
In this kind of initialization, we need a lvalue-to-rvalue conversion
for the initializer value if it is not a rvalue. This lets us accept the
following code:
enum class A : unsigned {};
A foo(unsigned x) { return A{x}; }
Differential Revision: https://reviews.llvm.org/D29723
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@295266 91177308-0d34-0410-b5e6-96231b3b80d8
such guides below explicit ones, and ensure that references to the class's
template parameters are not treated as forwarding references.
We make a few tweaks to the wording in the current standard:
1) The constructor parameter list is copied faithfully to the deduction guide,
without losing default arguments or a varargs ellipsis (which the standard
wording loses by omission).
2) If the class template declares no constructors, we add a T() -> T<...> guide
(which will only ever work if T has default arguments for all non-pack
template parameters).
3) If the class template declares nothing that looks like a copy or move
constructor, we add a T(T<...>) -> T<...> guide.
#2 and #3 follow from the "pretend we had a class type with these constructors"
philosophy for deduction guides.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@295007 91177308-0d34-0410-b5e6-96231b3b80d8
Contrary to the comment, DeclContext intends to guarantee that the lookup
results for a particular name will be stable across non-AST-mutating
operations, so a copy here should not be necessary. Further, if a copy *is*
necessary, the other four instances of this pattern within this file would also
be wrong, and we have no evidence of any problems with them; if this change
unearths problems, we should fix all the instances of this pattern.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@293740 91177308-0d34-0410-b5e6-96231b3b80d8
CheckDesignatedInitializer wasn't taking into account the base classes
when computing the index for the field in the derived class, which
caused the test case to crash during IRGen because of a malformed AST.
rdar://problem/26795040
Differential Revision: https://reviews.llvm.org/D28705
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@292245 91177308-0d34-0410-b5e6-96231b3b80d8
This implements something like the current direction of DR1581: we use a narrow
syntactic check to determine the set of places where a constant expression
could be evaluated, and only instantiate a constexpr function or variable if
it's referenced in one of those contexts, or is odr-used.
It's not yet clear whether this is the right set of syntactic locations; we
currently consider all contexts within templates that would result in odr-uses
after instantiation, and contexts within list-initialization (narrowing
conversions take another victim...), as requiring instantiation. We could in
principle restrict the former cases more (only const integral / reference
variable initializers, and contexts in which a constant expression is required,
perhaps). However, this is sufficient to allow us to accept libstdc++ code,
which relies on GCC's behavior (which appears to be somewhat similar to this
approach).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@291318 91177308-0d34-0410-b5e6-96231b3b80d8
argument even if the expression is value-dependent (we need to suppress the
final portion of the narrowing check, but the rest of the checking can still be
done eagerly).
This affects template template argument validity and partial ordering under
p0522r0.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@290276 91177308-0d34-0410-b5e6-96231b3b80d8
effect they would have in C++11. In particular, they do not prevent
value-initialization from performing zero-initialization, nor do they prevent a
struct from being an aggregate.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@290229 91177308-0d34-0410-b5e6-96231b3b80d8
the requested cv-qualifiers after construction. This usually doesn't matter,
but it does matter within a ?: operator.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@290227 91177308-0d34-0410-b5e6-96231b3b80d8