[CUDA] Improve target attribute checking for function templates.

* __host__ __device__ functions are no longer considered to be
  redeclarations of __host__ or __device__ functions. This prevents
  unintentional merging of target attributes across them.
* Function target attributes are not considered (and must match) during
  explicit instantiation and specialization of function templates.

Differential Revision: https://reviews.llvm.org/D25809

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@288962 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Artem Belevich 2016-12-07 19:27:16 +00:00
parent ac2fcb858c
commit ed12690047
10 changed files with 247 additions and 70 deletions

View File

@ -6821,6 +6821,11 @@ def err_cuda_host_shared : Error<
"__shared__ local variables not allowed in "
"%select{__device__|__global__|__host__|__host__ __device__}0 functions">;
def err_cuda_nonglobal_constant : Error<"__constant__ variables must be global">;
def err_cuda_ovl_target : Error<
"%select{__device__|__global__|__host__|__host__ __device__}0 function %1 "
"cannot overload %select{__device__|__global__|__host__|__host__ __device__}2 function %3">;
def note_cuda_ovl_candidate_target_mismatch : Note<
"candidate template ignored: target attributes do not match">;
def warn_non_pod_vararg_with_format_string : Warning<
"cannot pass %select{non-POD|non-trivial}0 object of type %1 to variadic "

View File

@ -6568,7 +6568,9 @@ public:
/// not be resolved to a suitable function.
TDK_FailedOverloadResolution,
/// \brief Deduction failed; that's all we know.
TDK_MiscellaneousDeductionFailure
TDK_MiscellaneousDeductionFailure,
/// \brief CUDA Target attributes do not match.
TDK_CUDATargetMismatch
};
TemplateDeductionResult
@ -9419,6 +9421,7 @@ public:
/// Use this rather than examining the function's attributes yourself -- you
/// will get it wrong. Returns CFT_Host if D is null.
CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D);
CUDAFunctionTarget IdentifyCUDATarget(const AttributeList *Attr);
/// Gets the CUDA target for the current context.
CUDAFunctionTarget CurrentCUDATarget() {
@ -9517,6 +9520,10 @@ public:
bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
/// Check whether NewFD is a valid overload for CUDA. Emits
/// diagnostics and invalidates NewFD if not.
void checkCUDATargetOverload(FunctionDecl *NewFD, LookupResult &Previous);
/// \name Code completion
//@{
/// \brief Describes the context in which code completion occurs.

View File

@ -54,6 +54,45 @@ ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
/*IsExecConfig=*/true);
}
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const AttributeList *Attr) {
bool HasHostAttr = false;
bool HasDeviceAttr = false;
bool HasGlobalAttr = false;
bool HasInvalidTargetAttr = false;
while (Attr) {
switch(Attr->getKind()){
case AttributeList::AT_CUDAGlobal:
HasGlobalAttr = true;
break;
case AttributeList::AT_CUDAHost:
HasHostAttr = true;
break;
case AttributeList::AT_CUDADevice:
HasDeviceAttr = true;
break;
case AttributeList::AT_CUDAInvalidTarget:
HasInvalidTargetAttr = true;
break;
default:
break;
}
Attr = Attr->getNext();
}
if (HasInvalidTargetAttr)
return CFT_InvalidTarget;
if (HasGlobalAttr)
return CFT_Global;
if (HasHostAttr && HasDeviceAttr)
return CFT_HostDevice;
if (HasDeviceAttr)
return CFT_Device;
return CFT_Host;
}
/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
// Code that lives outside a function is run on the host.
@ -815,3 +854,32 @@ void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
}
}
void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
LookupResult &Previous) {
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
for (NamedDecl *OldND : Previous) {
FunctionDecl *OldFD = OldND->getAsFunction();
if (!OldFD)
continue;
CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
// Don't allow HD and global functions to overload other functions with the
// same signature. We allow overloading based on CUDA attributes so that
// functions can have different implementations on the host and device, but
// HD/global functions "exist" in some sense on both the host and device, so
// should have the same implementation on both sides.
if (NewTarget != OldTarget &&
((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
(NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
!IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
/* ConsiderCudaAttrs = */ false)) {
Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
<< NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
Diag(OldFD->getLocation(), diag::note_previous_declaration);
NewFD->setInvalidDecl();
break;
}
}
}

View File

@ -9090,6 +9090,9 @@ bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
diag::warn_cxx1z_compat_exception_spec_in_signature)
<< NewFD;
}
if (!Redeclaration && LangOpts.CUDA)
checkCUDATargetOverload(NewFD, Previous);
}
return Redeclaration;
}

View File

@ -580,6 +580,7 @@ clang::MakeDeductionFailureInfo(ASTContext &Context,
case Sema::TDK_TooManyArguments:
case Sema::TDK_TooFewArguments:
case Sema::TDK_MiscellaneousDeductionFailure:
case Sema::TDK_CUDATargetMismatch:
Result.Data = nullptr;
break;
@ -647,6 +648,7 @@ void DeductionFailureInfo::Destroy() {
case Sema::TDK_TooFewArguments:
case Sema::TDK_InvalidExplicitArguments:
case Sema::TDK_FailedOverloadResolution:
case Sema::TDK_CUDATargetMismatch:
break;
case Sema::TDK_Inconsistent:
@ -689,6 +691,7 @@ TemplateParameter DeductionFailureInfo::getTemplateParameter() {
case Sema::TDK_DeducedMismatch:
case Sema::TDK_NonDeducedMismatch:
case Sema::TDK_FailedOverloadResolution:
case Sema::TDK_CUDATargetMismatch:
return TemplateParameter();
case Sema::TDK_Incomplete:
@ -720,6 +723,7 @@ TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
case Sema::TDK_Underqualified:
case Sema::TDK_NonDeducedMismatch:
case Sema::TDK_FailedOverloadResolution:
case Sema::TDK_CUDATargetMismatch:
return nullptr;
case Sema::TDK_DeducedMismatch:
@ -747,6 +751,7 @@ const TemplateArgument *DeductionFailureInfo::getFirstArg() {
case Sema::TDK_InvalidExplicitArguments:
case Sema::TDK_SubstitutionFailure:
case Sema::TDK_FailedOverloadResolution:
case Sema::TDK_CUDATargetMismatch:
return nullptr;
case Sema::TDK_Inconsistent:
@ -774,6 +779,7 @@ const TemplateArgument *DeductionFailureInfo::getSecondArg() {
case Sema::TDK_InvalidExplicitArguments:
case Sema::TDK_SubstitutionFailure:
case Sema::TDK_FailedOverloadResolution:
case Sema::TDK_CUDATargetMismatch:
return nullptr;
case Sema::TDK_Inconsistent:
@ -1139,20 +1145,11 @@ bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
OldTarget = IdentifyCUDATarget(Old);
if (NewTarget == CFT_InvalidTarget || NewTarget == CFT_Global)
if (NewTarget == CFT_InvalidTarget)
return false;
assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
// Don't allow HD and global functions to overload other functions with the
// same signature. We allow overloading based on CUDA attributes so that
// functions can have different implementations on the host and device, but
// HD/global functions "exist" in some sense on both the host and device, so
// should have the same implementation on both sides.
if ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
(NewTarget == CFT_Global) || (OldTarget == CFT_Global))
return false;
// Allow overloading of functions with same signature and different CUDA
// target attributes.
return NewTarget != OldTarget;
@ -9713,6 +9710,10 @@ static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
MaybeEmitInheritedConstructorNote(S, Found);
return;
case Sema::TDK_CUDATargetMismatch:
S.Diag(Templated->getLocation(),
diag::note_cuda_ovl_candidate_target_mismatch);
return;
}
}
@ -9969,6 +9970,7 @@ static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
case Sema::TDK_DeducedMismatch:
case Sema::TDK_NonDeducedMismatch:
case Sema::TDK_MiscellaneousDeductionFailure:
case Sema::TDK_CUDATargetMismatch:
return 3;
case Sema::TDK_InstantiationDepth:

View File

@ -7043,6 +7043,19 @@ bool Sema::CheckFunctionTemplateSpecialization(
continue;
}
// Target attributes are part of function signature during cuda
// compilation, so deduced template must also have matching CUDA
// target. Given that regular template deduction does not take
// target attributes into account, we perform target match check
// here and reject candidates that have different target.
if (LangOpts.CUDA &&
IdentifyCUDATarget(Specialization) != IdentifyCUDATarget(FD)) {
FailedCandidates.addCandidate().set(
I.getPair(), FunTmpl->getTemplatedDecl(),
MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
continue;
}
// Record this candidate.
if (ExplicitTemplateArgs)
ConvertedTemplateArgs[Specialization] = std::move(Args);
@ -8103,6 +8116,7 @@ DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
// instantiated from the member definition associated with its class
// template.
UnresolvedSet<8> Matches;
AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
P != PEnd; ++P) {
@ -8140,6 +8154,26 @@ DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
continue;
}
// Target attributes are part of function signature during cuda
// compilation, so deduced template must also have matching CUDA
// target. Given that regular template deduction does not take it
// into account, we perform target match check here and reject
// candidates that have different target.
if (LangOpts.CUDA) {
CUDAFunctionTarget DeclaratorTarget = IdentifyCUDATarget(Attr);
// We need to adjust target when HD is forced by
// #pragma clang force_cuda_host_device
if (ForceCUDAHostDeviceDepth > 0 &&
(DeclaratorTarget == CFT_Device || DeclaratorTarget == CFT_Host))
DeclaratorTarget = CFT_HostDevice;
if (IdentifyCUDATarget(Specialization) != DeclaratorTarget) {
FailedCandidates.addCandidate().set(
P.getPair(), FunTmpl->getTemplatedDecl(),
MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
continue;
}
}
Matches.addDecl(Specialization, P.getAccess());
}
@ -8210,7 +8244,6 @@ DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
}
Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
if (Attr)
ProcessDeclAttributeList(S, Specialization, Attr);

View File

@ -36,7 +36,7 @@ Kernel3()
{
}
template void Kernel3<MAX_THREADS_PER_BLOCK>();
template __global__ void Kernel3<MAX_THREADS_PER_BLOCK>();
// CHECK: !{{[0-9]+}} = !{void ()* @{{.*}}Kernel3{{.*}}, !"maxntidx", i32 256}
template <int max_threads_per_block, int min_blocks_per_mp>
@ -45,7 +45,7 @@ __launch_bounds__(max_threads_per_block, min_blocks_per_mp)
Kernel4()
{
}
template void Kernel4<MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MP>();
template __global__ void Kernel4<MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MP>();
// CHECK: !{{[0-9]+}} = !{void ()* @{{.*}}Kernel4{{.*}}, !"maxntidx", i32 256}
// CHECK: !{{[0-9]+}} = !{void ()* @{{.*}}Kernel4{{.*}}, !"minctasm", i32 2}
@ -58,7 +58,7 @@ __launch_bounds__(max_threads_per_block + constint,
Kernel5()
{
}
template void Kernel5<MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MP>();
template __global__ void Kernel5<MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MP>();
// CHECK: !{{[0-9]+}} = !{void ()* @{{.*}}Kernel5{{.*}}, !"maxntidx", i32 356}
// CHECK: !{{[0-9]+}} = !{void ()* @{{.*}}Kernel5{{.*}}, !"minctasm", i32 258}

View File

@ -40,21 +40,21 @@ __host__ HostReturnTy dh() { return HostReturnTy(); }
__device__ DeviceReturnTy dh() { return DeviceReturnTy(); }
// H/HD and D/HD are not allowed.
__host__ __device__ int hdh() { return 0; } // expected-note {{previous definition is here}}
__host__ int hdh() { return 0; } // expected-error {{redefinition of 'hdh'}}
__host__ __device__ int hdh() { return 0; } // expected-note {{previous declaration is here}}
__host__ int hdh() { return 0; }
// expected-error@-1 {{__host__ function 'hdh' cannot overload __host__ __device__ function 'hdh'}}
__host__ int hhd() { return 0; } // expected-note {{previous definition is here}}
__host__ __device__ int hhd() { return 0; } // expected-error {{redefinition of 'hhd'}}
// expected-warning@-1 {{attribute declaration must precede definition}}
// expected-note@-3 {{previous definition is here}}
__host__ int hhd() { return 0; } // expected-note {{previous declaration is here}}
__host__ __device__ int hhd() { return 0; }
// expected-error@-1 {{__host__ __device__ function 'hhd' cannot overload __host__ function 'hhd'}}
__host__ __device__ int hdd() { return 0; } // expected-note {{previous definition is here}}
__device__ int hdd() { return 0; } // expected-error {{redefinition of 'hdd'}}
__host__ __device__ int hdd() { return 0; } // expected-note {{previous declaration is here}}
__device__ int hdd() { return 0; }
// expected-error@-1 {{__device__ function 'hdd' cannot overload __host__ __device__ function 'hdd'}}
__device__ int dhd() { return 0; } // expected-note {{previous definition is here}}
__host__ __device__ int dhd() { return 0; } // expected-error {{redefinition of 'dhd'}}
// expected-warning@-1 {{attribute declaration must precede definition}}
// expected-note@-3 {{previous definition is here}}
__device__ int dhd() { return 0; } // expected-note {{previous declaration is here}}
__host__ __device__ int dhd() { return 0; }
// expected-error@-1 {{__host__ __device__ function 'dhd' cannot overload __device__ function 'dhd'}}
// Same tests for extern "C" functions.
extern "C" __host__ int chh() { return 0; } // expected-note {{previous definition is here}}
@ -65,13 +65,13 @@ extern "C" __device__ DeviceReturnTy cdh() { return DeviceReturnTy(); }
extern "C" __host__ HostReturnTy cdh() { return HostReturnTy(); }
// H/HD and D/HD overloading is not allowed.
extern "C" __host__ __device__ int chhd1() { return 0; } // expected-note {{previous definition is here}}
extern "C" __host__ int chhd1() { return 0; } // expected-error {{redefinition of 'chhd1'}}
extern "C" __host__ __device__ int chhd1() { return 0; } // expected-note {{previous declaration is here}}
extern "C" __host__ int chhd1() { return 0; }
// expected-error@-1 {{__host__ function 'chhd1' cannot overload __host__ __device__ function 'chhd1'}}
extern "C" __host__ int chhd2() { return 0; } // expected-note {{previous definition is here}}
extern "C" __host__ __device__ int chhd2() { return 0; } // expected-error {{redefinition of 'chhd2'}}
// expected-warning@-1 {{attribute declaration must precede definition}}
// expected-note@-3 {{previous definition is here}}
extern "C" __host__ int chhd2() { return 0; } // expected-note {{previous declaration is here}}
extern "C" __host__ __device__ int chhd2() { return 0; }
// expected-error@-1 {{__host__ __device__ function 'chhd2' cannot overload __host__ function 'chhd2'}}
// Helper functions to verify calling restrictions.
__device__ DeviceReturnTy d() { return DeviceReturnTy(); }
@ -250,33 +250,39 @@ struct m_hd {
struct m_hhd {
__host__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}}
__host__ __device__ void operator delete(void *ptr) {} // expected-error {{class member cannot be redeclared}}
__host__ __device__ void operator delete(void *ptr) {}
// expected-error@-1 {{__host__ __device__ function 'operator delete' cannot overload __host__ function 'operator delete'}}
};
struct m_hdh {
__host__ __device__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}}
__host__ void operator delete(void *ptr) {} // expected-error {{class member cannot be redeclared}}
__host__ void operator delete(void *ptr) {}
// expected-error@-1 {{__host__ function 'operator delete' cannot overload __host__ __device__ function 'operator delete'}}
};
struct m_dhd {
__device__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}}
__host__ __device__ void operator delete(void *ptr) {} // expected-error {{class member cannot be redeclared}}
__host__ __device__ void operator delete(void *ptr) {}
// expected-error@-1 {{__host__ __device__ function 'operator delete' cannot overload __device__ function 'operator delete'}}
};
struct m_hdd {
__host__ __device__ void operator delete(void *ptr) {} // expected-note {{previous declaration is here}}
__device__ void operator delete(void *ptr) {} // expected-error {{class member cannot be redeclared}}
__device__ void operator delete(void *ptr) {}
// expected-error@-1 {{__device__ function 'operator delete' cannot overload __host__ __device__ function 'operator delete'}}
};
// __global__ functions can't be overloaded based on attribute
// difference.
struct G {
friend void friend_of_g(G &arg);
friend void friend_of_g(G &arg); // expected-note {{previous declaration is here}}
private:
int x;
int x; // expected-note {{declared private here}}
};
__global__ void friend_of_g(G &arg) { int x = arg.x; } // expected-note {{previous definition is here}}
void friend_of_g(G &arg) { int x = arg.x; } // expected-error {{redefinition of 'friend_of_g'}}
__global__ void friend_of_g(G &arg) { int x = arg.x; }
// expected-error@-1 {{__global__ function 'friend_of_g' cannot overload __host__ function 'friend_of_g'}}
// expected-error@-2 {{'x' is a private member of 'G'}}
void friend_of_g(G &arg) { int x = arg.x; }
// HD functions are sometimes allowed to call H or D functions -- this
// is an artifact of the source-to-source splitting performed by nvcc

View File

@ -0,0 +1,82 @@
// RUN: %clang_cc1 -std=c++11 -triple x86_64-unknown-linux-gnu -fsyntax-only -verify %s
// RUN: %clang_cc1 -std=c++11 -triple nvptx64-nvidia-cuda -fsyntax-only -fcuda-is-device -verify %s
#include "Inputs/cuda.h"
struct HType {}; // expected-note-re 6 {{candidate constructor {{.*}} not viable: no known conversion from 'DType'}}
struct DType {}; // expected-note-re 6 {{candidate constructor {{.*}} not viable: no known conversion from 'HType'}}
struct HDType {};
template <typename T> __host__ HType overload_h_d(T a) { return HType(); }
// expected-note@-1 2 {{candidate template ignored: could not match 'HType' against 'DType'}}
// expected-note@-2 2 {{candidate template ignored: target attributes do not match}}
template <typename T> __device__ DType overload_h_d(T a) { return DType(); }
// expected-note@-1 2 {{candidate template ignored: could not match 'DType' against 'HType'}}
// expected-note@-2 2 {{candidate template ignored: target attributes do not match}}
// Check explicit instantiation.
template __device__ __host__ DType overload_h_d(int a); // There's no HD template...
// expected-error@-1 {{explicit instantiation of 'overload_h_d' does not refer to a function template, variable template, member function, member class, or static data member}}
template __device__ __host__ HType overload_h_d(int a); // There's no HD template...
// expected-error@-1 {{explicit instantiation of 'overload_h_d' does not refer to a function template, variable template, member function, member class, or static data member}}
template __device__ DType overload_h_d(int a); // OK. instantiates D
template __host__ HType overload_h_d(int a); // OK. instantiates H
// Check explicit specialization.
template <> __device__ __host__ DType overload_h_d(long a); // There's no HD template...
// expected-error@-1 {{no function template matches function template specialization 'overload_h_d'}}
template <> __device__ __host__ HType overload_h_d(long a); // There's no HD template...
// expected-error@-1 {{no function template matches function template specialization 'overload_h_d'}}
template <> __device__ DType overload_h_d(long a); // OK. instantiates D
template <> __host__ HType overload_h_d(long a); // OK. instantiates H
// Can't overload HD template with H or D template, though functions are OK.
template <typename T> __host__ __device__ HDType overload_hd(T a) { return HDType(); }
// expected-note@-1 {{previous declaration is here}}
// expected-note@-2 2 {{candidate template ignored: could not match 'HDType' against 'HType'}}
template <typename T> __device__ HDType overload_hd(T a);
// expected-error@-1 {{__device__ function 'overload_hd' cannot overload __host__ __device__ function 'overload_hd'}}
__device__ HDType overload_hd(int a); // OK.
// Verify that target attributes are taken into account when we
// explicitly specialize or instantiate function tempaltes.
template <> __host__ HType overload_hd(int a);
// expected-error@-1 {{no function template matches function template specialization 'overload_hd'}}
template __host__ HType overload_hd(long a);
// expected-error@-1 {{explicit instantiation of 'overload_hd' does not refer to a function template, variable template, member function, member class, or static data member}}
__host__ HType overload_hd(int a); // OK
template <typename T> __host__ T overload_h(T a); // expected-note {{previous declaration is here}}
template <typename T> __host__ __device__ T overload_h(T a);
// expected-error@-1 {{__host__ __device__ function 'overload_h' cannot overload __host__ function 'overload_h'}}
template <typename T> __device__ T overload_h(T a); // OK. D can overload H.
template <typename T> __host__ HType overload_h_d2(T a) { return HType(); }
template <typename T> __host__ __device__ HDType overload_h_d2(T a) { return HDType(); }
template <typename T1, typename T2 = int> __device__ DType overload_h_d2(T1 a) { T1 x; T2 y; return DType(); }
__host__ void hf() {
overload_hd(13);
HType h = overload_h_d(10);
HType h2i = overload_h_d2<int>(11);
HType h2ii = overload_h_d2<int>(12);
// These should be implicitly instantiated from __host__ template returning HType.
DType d = overload_h_d(20); // expected-error {{no viable conversion from 'HType' to 'DType'}}
DType d2i = overload_h_d2<int>(21); // expected-error {{no viable conversion from 'HType' to 'DType'}}
DType d2ii = overload_h_d2<int>(22); // expected-error {{no viable conversion from 'HType' to 'DType'}}
}
__device__ void df() {
overload_hd(23);
// These should be implicitly instantiated from __device__ template returning DType.
HType h = overload_h_d(10); // expected-error {{no viable conversion from 'DType' to 'HType'}}
HType h2i = overload_h_d2<int>(11); // expected-error {{no viable conversion from 'DType' to 'HType'}}
HType h2ii = overload_h_d2<int>(12); // expected-error {{no viable conversion from 'DType' to 'HType'}}
DType d = overload_h_d(20);
DType d2i = overload_h_d2<int>(21);
DType d2ii = overload_h_d2<int>(22);
}

View File

@ -1,29 +0,0 @@
// Verifies correct inheritance of target attributes during template
// instantiation and specialization.
// RUN: %clang_cc1 -triple x86_64-unknown-linux-gnu -fsyntax-only -verify %s
// RUN: %clang_cc1 -triple nvptx64-nvidia-cuda -fsyntax-only -fcuda-is-device -verify %s
#include "Inputs/cuda.h"
// Function must inherit target attributes during instantiation, but not during
// specialization.
template <typename T> __host__ __device__ T function_template(const T &a);
// Specialized functions have their own attributes.
// expected-note@+1 {{candidate function not viable: call to __host__ function from __device__ function}}
template <> __host__ float function_template<float>(const float &from);
// expected-note@+1 {{candidate function not viable: call to __device__ function from __host__ function}}
template <> __device__ double function_template<double>(const double &from);
__host__ void hf() {
function_template<float>(1.0f); // OK. Specialization is __host__.
function_template<double>(2.0); // expected-error {{no matching function for call to 'function_template'}}
function_template(1); // OK. Instantiated function template is HD.
}
__device__ void df() {
function_template<float>(3.0f); // expected-error {{no matching function for call to 'function_template'}}
function_template<double>(4.0); // OK. Specialization is __device__.
function_template(1); // OK. Instantiated function template is HD.
}