[analyzer][UninitializedObjectChecker] Fixed dereferencing

iThis patch aims to fix derefencing, which has been debated for months now.

Instead of working with SVals, the function now relies on TypedValueRegion.

Differential Revision: https://reviews.llvm.org/D51057


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@342213 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Kristof Umann 2018-09-14 08:58:21 +00:00
parent 2cf9113b81
commit 6667b4e8eb
6 changed files with 208 additions and 92 deletions

View File

@ -87,7 +87,7 @@ public:
/// Returns with Field's name. This is a helper function to get the correct name
/// even if Field is a captured lambda variable.
StringRef getVariableName(const FieldDecl *Field);
std::string getVariableName(const FieldDecl *Field);
/// Represents a field chain. A field chain is a vector of fields where the
/// first element of the chain is the object under checking (not stored), and
@ -255,7 +255,13 @@ private:
/// ease. This also helps ensuring that every special field type is handled
/// correctly.
inline bool isPrimitiveType(const QualType &T) {
return T->isBuiltinType() || T->isEnumeralType() || T->isMemberPointerType();
return T->isBuiltinType() || T->isEnumeralType() ||
T->isMemberPointerType() || T->isBlockPointerType() ||
T->isFunctionType();
}
inline bool isDereferencableType(const QualType &T) {
return T->isAnyPointerType() || T->isReferenceType();
}
// Template method definitions.

View File

@ -252,9 +252,12 @@ bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
!R->getValueType()->isUnionType() &&
"This method only checks non-union record objects!");
const RecordDecl *RD =
R->getValueType()->getAs<RecordType>()->getDecl()->getDefinition();
assert(RD && "Referred record has no definition");
const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition();
if (!RD) {
IsAnyFieldInitialized = true;
return true;
}
bool ContainsUninitField = false;
@ -292,8 +295,7 @@ bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
continue;
}
if (T->isAnyPointerType() || T->isReferenceType() ||
T->isBlockPointerType()) {
if (isDereferencableType(T)) {
if (isPointerOrReferenceUninit(FR, LocalChain))
ContainsUninitField = true;
continue;
@ -487,7 +489,7 @@ static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
return false;
}
StringRef clang::ento::getVariableName(const FieldDecl *Field) {
std::string clang::ento::getVariableName(const FieldDecl *Field) {
// If Field is a captured lambda variable, Field->getName() will return with
// an empty string. We can however acquire it's name from the lambda's
// captures.
@ -496,7 +498,16 @@ StringRef clang::ento::getVariableName(const FieldDecl *Field) {
if (CXXParent && CXXParent->isLambda()) {
assert(CXXParent->captures_begin());
auto It = CXXParent->captures_begin() + Field->getFieldIndex();
return It->getCapturedVar()->getName();
if (It->capturesVariable())
return llvm::Twine("/*captured variable*/" +
It->getCapturedVar()->getName())
.str();
if (It->capturesThis())
return "/*'this' capture*/";
llvm_unreachable("No other capture type is expected!");
}
return Field->getName();

View File

@ -95,11 +95,13 @@ public:
/// known, and thus FD can not be analyzed.
static bool isVoidPointer(QualType T);
/// Dereferences \p V and returns the value and dynamic type of the pointee, as
/// well as whether \p FR needs to be casted back to that type. If for whatever
/// reason dereferencing fails, returns with None.
static llvm::Optional<std::tuple<SVal, QualType, bool>>
dereference(ProgramStateRef State, const FieldRegion *FR);
using DereferenceInfo = std::pair<const TypedValueRegion *, bool>;
/// Dereferences \p FR and returns with the pointee's region, and whether it
/// needs to be casted back to it's location type. If for whatever reason
/// dereferencing fails, returns with None.
static llvm::Optional<DereferenceInfo> dereference(ProgramStateRef State,
const FieldRegion *FR);
//===----------------------------------------------------------------------===//
// Methods for FindUninitializedFields.
@ -110,10 +112,8 @@ dereference(ProgramStateRef State, const FieldRegion *FR);
bool FindUninitializedFields::isPointerOrReferenceUninit(
const FieldRegion *FR, FieldChainInfo LocalChain) {
assert((FR->getDecl()->getType()->isAnyPointerType() ||
FR->getDecl()->getType()->isReferenceType() ||
FR->getDecl()->getType()->isBlockPointerType()) &&
"This method only checks pointer/reference objects!");
assert(isDereferencableType(FR->getDecl()->getType()) &&
"This method only checks dereferencable objects!");
SVal V = State->getSVal(FR);
@ -134,54 +134,47 @@ bool FindUninitializedFields::isPointerOrReferenceUninit(
// At this point the pointer itself is initialized and points to a valid
// location, we'll now check the pointee.
llvm::Optional<std::tuple<SVal, QualType, bool>> DerefInfo =
dereference(State, FR);
llvm::Optional<DereferenceInfo> DerefInfo = dereference(State, FR);
if (!DerefInfo) {
IsAnyFieldInitialized = true;
return false;
}
V = std::get<0>(*DerefInfo);
QualType DynT = std::get<1>(*DerefInfo);
bool NeedsCastBack = std::get<2>(*DerefInfo);
const TypedValueRegion *R = DerefInfo->first;
const bool NeedsCastBack = DerefInfo->second;
// If FR is a pointer pointing to a non-primitive type.
if (Optional<nonloc::LazyCompoundVal> RecordV =
V.getAs<nonloc::LazyCompoundVal>()) {
QualType DynT = R->getLocationType();
QualType PointeeT = DynT->getPointeeType();
const TypedValueRegion *R = RecordV->getRegion();
if (PointeeT->isStructureOrClassType()) {
if (NeedsCastBack)
return isNonUnionUninit(R, LocalChain.add(NeedsCastLocField(FR, DynT)));
return isNonUnionUninit(R, LocalChain.add(LocField(FR)));
}
if (DynT->getPointeeType()->isStructureOrClassType()) {
if (PointeeT->isUnionType()) {
if (isUnionUninit(R)) {
if (NeedsCastBack)
return isNonUnionUninit(R, LocalChain.add(NeedsCastLocField(FR, DynT)));
return isNonUnionUninit(R, LocalChain.add(LocField(FR)));
}
if (DynT->getPointeeType()->isUnionType()) {
if (isUnionUninit(R)) {
if (NeedsCastBack)
return addFieldToUninits(LocalChain.add(NeedsCastLocField(FR, DynT)));
return addFieldToUninits(LocalChain.add(LocField(FR)));
} else {
IsAnyFieldInitialized = true;
return false;
}
}
if (DynT->getPointeeType()->isArrayType()) {
return addFieldToUninits(LocalChain.add(NeedsCastLocField(FR, DynT)));
return addFieldToUninits(LocalChain.add(LocField(FR)));
} else {
IsAnyFieldInitialized = true;
return false;
}
llvm_unreachable("All cases are handled!");
}
assert((isPrimitiveType(DynT->getPointeeType()) || DynT->isAnyPointerType() ||
DynT->isReferenceType()) &&
if (PointeeT->isArrayType()) {
IsAnyFieldInitialized = true;
return false;
}
assert((isPrimitiveType(PointeeT) || isDereferencableType(PointeeT)) &&
"At this point FR must either have a primitive dynamic type, or it "
"must be a null, undefined, unknown or concrete pointer!");
if (isPrimitiveUninit(V)) {
SVal PointeeV = State->getSVal(R);
if (isPrimitiveUninit(PointeeV)) {
if (NeedsCastBack)
return addFieldToUninits(LocalChain.add(NeedsCastLocField(FR, DynT)));
return addFieldToUninits(LocalChain.add(LocField(FR)));
@ -204,47 +197,46 @@ static bool isVoidPointer(QualType T) {
return false;
}
static llvm::Optional<std::tuple<SVal, QualType, bool>>
dereference(ProgramStateRef State, const FieldRegion *FR) {
static llvm::Optional<DereferenceInfo> dereference(ProgramStateRef State,
const FieldRegion *FR) {
DynamicTypeInfo DynTInfo;
QualType DynT;
llvm::SmallSet<const TypedValueRegion *, 5> VisitedRegions;
// If the static type of the field is a void pointer, we need to cast it back
// to the dynamic type before dereferencing.
bool NeedsCastBack = isVoidPointer(FR->getDecl()->getType());
SVal V = State->getSVal(FR);
assert(V.getAs<loc::MemRegionVal>() && "V must be loc::MemRegionVal!");
assert(V.getAsRegion() && "V must have an underlying region!");
// If V is multiple pointer value, we'll dereference it again (e.g.: int** ->
// int*).
// TODO: Dereference according to the dynamic type to avoid infinite loop for
// these kind of fields:
// int **ptr = reinterpret_cast<int **>(&ptr);
while (auto Tmp = V.getAs<loc::MemRegionVal>()) {
// We can't reason about symbolic regions, assume its initialized.
// Note that this also avoids a potential infinite recursion, because
// constructors for list-like classes are checked without being called, and
// the Static Analyzer will construct a symbolic region for Node *next; or
// similar code snippets.
if (Tmp->getRegion()->getSymbolicBase()) {
// The region we'd like to acquire.
const auto *R = V.getAsRegion()->getAs<TypedValueRegion>();
if (!R)
return None;
VisitedRegions.insert(R);
// We acquire the dynamic type of R,
QualType DynT = R->getLocationType();
while (const MemRegion *Tmp = State->getSVal(R, DynT).getAsRegion()) {
R = Tmp->getAs<TypedValueRegion>();
if (!R)
return None;
}
DynTInfo = getDynamicTypeInfo(State, Tmp->getRegion());
if (!DynTInfo.isValid()) {
// We found a cyclic pointer, like int *ptr = (int *)&ptr.
// TODO: Report these fields too.
if (!VisitedRegions.insert(R).second)
return None;
}
DynT = DynTInfo.getType();
if (isVoidPointer(DynT)) {
return None;
}
V = State->getSVal(*Tmp, DynT);
DynT = R->getLocationType();
// In order to ensure that this loop terminates, we're also checking the
// dynamic type of R, since type hierarchy is finite.
if (isDereferencableType(DynT->getPointeeType()))
break;
}
return std::make_tuple(V, DynT, NeedsCastBack);
return std::make_pair(R, NeedsCastBack);
}

View File

@ -45,6 +45,50 @@ void fNullPtrTest() {
NullPtrTest();
}
//===----------------------------------------------------------------------===//
// Alloca tests.
//===----------------------------------------------------------------------===//
struct UntypedAllocaTest {
void *allocaPtr;
int dontGetFilteredByNonPedanticMode = 0;
UntypedAllocaTest() : allocaPtr(__builtin_alloca(sizeof(int))) {
// All good!
}
};
void fUntypedAllocaTest() {
UntypedAllocaTest();
}
struct TypedAllocaTest1 {
int *allocaPtr; // expected-note{{uninitialized pointee 'this->allocaPtr'}}
int dontGetFilteredByNonPedanticMode = 0;
TypedAllocaTest1() // expected-warning{{1 uninitialized field}}
: allocaPtr(static_cast<int *>(__builtin_alloca(sizeof(int)))) {}
};
void fTypedAllocaTest1() {
TypedAllocaTest1();
}
struct TypedAllocaTest2 {
int *allocaPtr;
int dontGetFilteredByNonPedanticMode = 0;
TypedAllocaTest2()
: allocaPtr(static_cast<int *>(__builtin_alloca(sizeof(int)))) {
*allocaPtr = 55555;
// All good!
}
};
void fTypedAllocaTest2() {
TypedAllocaTest2();
}
//===----------------------------------------------------------------------===//
// Heap pointer tests.
//===----------------------------------------------------------------------===//
@ -203,18 +247,14 @@ void fCyclicPointerTest1() {
CyclicPointerTest1();
}
// TODO: Currently, the checker ends up in an infinite loop for the following
// test case.
/*
struct CyclicPointerTest2 {
int **pptr;
int **pptr; // no-crash
CyclicPointerTest2() : pptr(reinterpret_cast<int **>(&pptr)) {}
};
void fCyclicPointerTest2() {
CyclicPointerTest2();
}
*/
//===----------------------------------------------------------------------===//
// Void pointer tests.
@ -470,6 +510,39 @@ void fMultiPointerTest3() {
MultiPointerTest3(mptr, int()); // '**mptr' uninitialized
}
//===----------------------------------------------------------------------===//
// Incomplete pointee tests.
//===----------------------------------------------------------------------===//
class IncompleteType;
struct IncompletePointeeTypeTest {
IncompleteType *pImpl; //no-crash
int dontGetFilteredByNonPedanticMode = 0;
IncompletePointeeTypeTest(IncompleteType *A) : pImpl(A) {}
};
void fIncompletePointeeTypeTest(void *ptr) {
IncompletePointeeTypeTest(reinterpret_cast<IncompleteType *>(ptr));
}
//===----------------------------------------------------------------------===//
// Function pointer tests.
//===----------------------------------------------------------------------===//
struct FunctionPointerWithDifferentDynTypeTest {
using Func1 = void *(*)();
using Func2 = int *(*)();
Func1 f; // no-crash
FunctionPointerWithDifferentDynTypeTest(Func2 f) : f((Func1)f) {}
};
// Note that there isn't a function calling the constructor of
// FunctionPointerWithDifferentDynTypeTest, because a crash could only be
// reproduced without it.
//===----------------------------------------------------------------------===//
// Member pointer tests.
//===----------------------------------------------------------------------===//
@ -645,6 +718,15 @@ void fCyclicList() {
CyclicList(&n1, int());
}
struct RingListTest {
RingListTest *next; // no-crash
RingListTest() : next(this) {}
};
void fRingListTest() {
RingListTest();
}
//===----------------------------------------------------------------------===//
// Tests for classes containing references.
//===----------------------------------------------------------------------===//

View File

@ -1,11 +1,11 @@
// RUN: %clang_analyze_cc1 -analyzer-checker=core,alpha.cplusplus.UninitializedObject \
// RUN: -analyzer-config alpha.cplusplus.UninitializedObject:Pedantic=true -DPEDANTIC \
// RUN: -analyzer-config alpha.cplusplus.UninitializedObject:CheckPointeeInitialization=true \
// RUN: -std=c++11 -verify %s
// RUN: -std=c++14 -verify %s
// RUN: %clang_analyze_cc1 -analyzer-checker=core,alpha.cplusplus.UninitializedObject \
// RUN: -analyzer-config alpha.cplusplus.UninitializedObject:CheckPointeeInitialization=true \
// RUN: -std=c++11 -verify %s
// RUN: -std=c++14 -verify %s
//===----------------------------------------------------------------------===//
// Default constructor test.
@ -781,7 +781,7 @@ struct LambdaTest2 {
void fLambdaTest2() {
int b;
auto equals = [&b](int a) { return a == b; }; // expected-note{{uninitialized pointee 'this->functor.b'}}
auto equals = [&b](int a) { return a == b; }; // expected-note{{uninitialized pointee 'this->functor./*captured variable*/b'}}
LambdaTest2<decltype(equals)>(equals, int());
}
#else
@ -803,8 +803,8 @@ void fLambdaTest2() {
namespace LT3Detail {
struct RecordType {
int x; // expected-note{{uninitialized field 'this->functor.rec1.x'}}
int y; // expected-note{{uninitialized field 'this->functor.rec1.y'}}
int x; // expected-note{{uninitialized field 'this->functor./*captured variable*/rec1.x'}}
int y; // expected-note{{uninitialized field 'this->functor./*captured variable*/rec1.y'}}
};
} // namespace LT3Detail
@ -857,8 +857,8 @@ struct MultipleLambdaCapturesTest1 {
void fMultipleLambdaCapturesTest1() {
int b1, b2 = 3, b3;
auto equals = [&b1, &b2, &b3](int a) { return a == b1 == b2 == b3; }; // expected-note{{uninitialized pointee 'this->functor.b1'}}
// expected-note@-1{{uninitialized pointee 'this->functor.b3'}}
auto equals = [&b1, &b2, &b3](int a) { return a == b1 == b2 == b3; }; // expected-note{{uninitialized pointee 'this->functor./*captured variable*/b1'}}
// expected-note@-1{{uninitialized pointee 'this->functor./*captured variable*/b3'}}
MultipleLambdaCapturesTest1<decltype(equals)>(equals, int());
}
@ -872,10 +872,35 @@ struct MultipleLambdaCapturesTest2 {
void fMultipleLambdaCapturesTest2() {
int b1, b2 = 3, b3;
auto equals = [b1, &b2, &b3](int a) { return a == b1 == b2 == b3; }; // expected-note{{uninitialized pointee 'this->functor.b3'}}
auto equals = [b1, &b2, &b3](int a) { return a == b1 == b2 == b3; }; // expected-note{{uninitialized pointee 'this->functor./*captured variable*/b3'}}
MultipleLambdaCapturesTest2<decltype(equals)>(equals, int());
}
struct LambdaWrapper {
void *func; // no-crash
int dontGetFilteredByNonPedanticMode = 0;
LambdaWrapper(void *ptr) : func(ptr) {} // expected-warning{{1 uninitialized field}}
};
struct ThisCapturingLambdaFactory {
int a; // expected-note{{uninitialized field 'static_cast<decltype(a.ret()) *>(this->func)->/*'this' capture*/->a'}}
auto ret() {
return [this] { (void)this; };
}
};
void fLambdaFieldWithInvalidThisCapture() {
void *ptr;
{
ThisCapturingLambdaFactory a;
decltype(a.ret()) lambda = a.ret();
ptr = &lambda;
}
LambdaWrapper t(ptr);
}
//===----------------------------------------------------------------------===//
// System header tests.
//===----------------------------------------------------------------------===//

View File

@ -4,7 +4,7 @@ typedef void (^myBlock) ();
struct StructWithBlock {
int a;
myBlock z; // expected-note{{uninitialized pointer 'this->z'}}
myBlock z; // expected-note{{uninitialized field 'this->z'}}
StructWithBlock() : a(0), z(^{}) {}