mirror of https://github.com/microsoft/clang.git
[ubsan] Skip overflow checks on safe arithmetic (fixes PR32874)
Currently, ubsan emits overflow checks for arithmetic that is known to be safe at compile-time, e.g: 1 + 1 => CheckedAdd(1, 1) This leads to breakage when using the __builtin_prefetch intrinsic. LLVM expects the arguments to @llvm.prefetch to be constant integers, and when ubsan inserts unnecessary checks on the operands to the intrinsic, this contract is broken, leading to verifier failures (see PR32874). Instead of special-casing __builtin_prefetch for ubsan, this patch fixes the underlying problem, i.e that clang currently emits unnecessary overflow checks. Testing: I ran the check-clang and check-ubsan targets with a stage2, ubsan-enabled build of clang. I added a regression test for PR32874, and some extra checking to make sure we don't regress runtime checking for unsafe arithmetic. The existing ubsan-promoted-arithmetic.cpp test also provides coverage for this change. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@301988 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
e28cd553dd
commit
424867959d
|
@ -51,6 +51,64 @@ struct BinOpInfo {
|
|||
BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
|
||||
FPOptions FPFeatures;
|
||||
const Expr *E; // Entire expr, for error unsupported. May not be binop.
|
||||
|
||||
/// Check if the binop can result in integer overflow.
|
||||
bool mayHaveIntegerOverflow() const {
|
||||
// Without constant input, we can't rule out overflow.
|
||||
const auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
|
||||
const auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
|
||||
if (!LHSCI || !RHSCI)
|
||||
return true;
|
||||
|
||||
// Assume overflow is possible, unless we can prove otherwise.
|
||||
bool Overflow = true;
|
||||
const auto &LHSAP = LHSCI->getValue();
|
||||
const auto &RHSAP = RHSCI->getValue();
|
||||
if (Opcode == BO_Add) {
|
||||
if (Ty->hasSignedIntegerRepresentation())
|
||||
(void)LHSAP.sadd_ov(RHSAP, Overflow);
|
||||
else
|
||||
(void)LHSAP.uadd_ov(RHSAP, Overflow);
|
||||
} else if (Opcode == BO_Sub) {
|
||||
if (Ty->hasSignedIntegerRepresentation())
|
||||
(void)LHSAP.ssub_ov(RHSAP, Overflow);
|
||||
else
|
||||
(void)LHSAP.usub_ov(RHSAP, Overflow);
|
||||
} else if (Opcode == BO_Mul) {
|
||||
if (Ty->hasSignedIntegerRepresentation())
|
||||
(void)LHSAP.smul_ov(RHSAP, Overflow);
|
||||
else
|
||||
(void)LHSAP.umul_ov(RHSAP, Overflow);
|
||||
} else if (Opcode == BO_Div || Opcode == BO_Rem) {
|
||||
if (Ty->hasSignedIntegerRepresentation() && !RHSCI->isZero())
|
||||
(void)LHSAP.sdiv_ov(RHSAP, Overflow);
|
||||
else
|
||||
return false;
|
||||
}
|
||||
return Overflow;
|
||||
}
|
||||
|
||||
/// Check if the binop computes a division or a remainder.
|
||||
bool isDivisionLikeOperation() const {
|
||||
return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
|
||||
Opcode == BO_RemAssign;
|
||||
}
|
||||
|
||||
/// Check if the binop can result in an integer division by zero.
|
||||
bool mayHaveIntegerDivisionByZero() const {
|
||||
if (isDivisionLikeOperation())
|
||||
if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
|
||||
return CI->isZero();
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Check if the binop can result in a float division by zero.
|
||||
bool mayHaveFloatDivisionByZero() const {
|
||||
if (isDivisionLikeOperation())
|
||||
if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
|
||||
return CFP->isZero();
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
static bool MustVisitNullValue(const Expr *E) {
|
||||
|
@ -85,9 +143,17 @@ static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
|
|||
assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
|
||||
"Expected a unary or binary operator");
|
||||
|
||||
// If the binop has constant inputs and we can prove there is no overflow,
|
||||
// we can elide the overflow check.
|
||||
if (!Op.mayHaveIntegerOverflow())
|
||||
return true;
|
||||
|
||||
// If a unary op has a widened operand, the op cannot overflow.
|
||||
if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
|
||||
return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
|
||||
|
||||
// We usually don't need overflow checks for binops with widened operands.
|
||||
// Multiplication with promoted unsigned operands is a special case.
|
||||
const auto *BO = cast<BinaryOperator>(Op.E);
|
||||
auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
|
||||
if (!OptionalLHSTy)
|
||||
|
@ -100,14 +166,14 @@ static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
|
|||
QualType LHSTy = *OptionalLHSTy;
|
||||
QualType RHSTy = *OptionalRHSTy;
|
||||
|
||||
// We usually don't need overflow checks for binary operations with widened
|
||||
// operands. Multiplication with promoted unsigned operands is a special case.
|
||||
// This is the simple case: binops without unsigned multiplication, and with
|
||||
// widened operands. No overflow check is needed here.
|
||||
if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
|
||||
!LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
|
||||
return true;
|
||||
|
||||
// The overflow check can be skipped if either one of the unpromoted types
|
||||
// are less than half the size of the promoted type.
|
||||
// For unsigned multiplication the overflow check can be elided if either one
|
||||
// of the unpromoted types are less than half the size of the promoted type.
|
||||
unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
|
||||
return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
|
||||
(2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
|
||||
|
@ -2377,7 +2443,8 @@ void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
|
|||
const auto *BO = cast<BinaryOperator>(Ops.E);
|
||||
if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
|
||||
Ops.Ty->hasSignedIntegerRepresentation() &&
|
||||
!IsWidenedIntegerOp(CGF.getContext(), BO->getLHS())) {
|
||||
!IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
|
||||
Ops.mayHaveIntegerOverflow()) {
|
||||
llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
|
||||
|
||||
llvm::Value *IntMin =
|
||||
|
@ -2400,11 +2467,13 @@ Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
|
|||
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
||||
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
|
||||
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
|
||||
Ops.Ty->isIntegerType()) {
|
||||
Ops.Ty->isIntegerType() &&
|
||||
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
|
||||
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
||||
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
|
||||
} else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
|
||||
Ops.Ty->isRealFloatingType()) {
|
||||
Ops.Ty->isRealFloatingType() &&
|
||||
Ops.mayHaveFloatDivisionByZero()) {
|
||||
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
||||
llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
|
||||
EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
|
||||
|
@ -2439,7 +2508,8 @@ Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
|
|||
// Rem in C can't be a floating point type: C99 6.5.5p2.
|
||||
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
|
||||
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
|
||||
Ops.Ty->isIntegerType()) {
|
||||
Ops.Ty->isIntegerType() &&
|
||||
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
|
||||
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
||||
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
|
||||
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
// RUN: %clang_cc1 -x c -S -emit-llvm -o - -triple x86_64-apple-darwin10 %s \
|
||||
// RUN: -w -fsanitize=signed-integer-overflow,unsigned-integer-overflow,integer-divide-by-zero,float-divide-by-zero \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: define void @foo
|
||||
// CHECK-NOT: !nosanitize
|
||||
void foo(const int *p) {
|
||||
// __builtin_prefetch expects its optional arguments to be constant integers.
|
||||
// Check that ubsan does not instrument any safe arithmetic performed in
|
||||
// operands to __builtin_prefetch. (A clang frontend check should reject
|
||||
// unsafe arithmetic in these operands.)
|
||||
|
||||
__builtin_prefetch(p, 0 + 1, 0 + 3);
|
||||
__builtin_prefetch(p, 1 - 0, 3 - 0);
|
||||
__builtin_prefetch(p, 1 * 1, 1 * 3);
|
||||
__builtin_prefetch(p, 1 / 1, 3 / 1);
|
||||
__builtin_prefetch(p, 3 % 2, 3 % 1);
|
||||
|
||||
__builtin_prefetch(p, 0U + 1U, 0U + 3U);
|
||||
__builtin_prefetch(p, 1U - 0U, 3U - 0U);
|
||||
__builtin_prefetch(p, 1U * 1U, 1U * 3U);
|
||||
__builtin_prefetch(p, 1U / 1U, 3U / 1U);
|
||||
__builtin_prefetch(p, 3U % 2U, 3U % 1U);
|
||||
}
|
||||
|
||||
// CHECK-LABEL: define void @ub_constant_arithmetic
|
||||
void ub_constant_arithmetic() {
|
||||
// Check that we still instrument unsafe arithmetic, even if it is known to
|
||||
// be unsafe at compile time.
|
||||
|
||||
int INT_MIN = 0xffffffff;
|
||||
int INT_MAX = 0x7fffffff;
|
||||
|
||||
// CHECK: call void @__ubsan_handle_add_overflow
|
||||
// CHECK: call void @__ubsan_handle_add_overflow
|
||||
INT_MAX + 1;
|
||||
INT_MAX + -1;
|
||||
|
||||
// CHECK: call void @__ubsan_handle_negate_overflow
|
||||
// CHECK: call void @__ubsan_handle_sub_overflow
|
||||
-INT_MIN;
|
||||
-INT_MAX - 2;
|
||||
|
||||
// CHECK: call void @__ubsan_handle_mul_overflow
|
||||
// CHECK: call void @__ubsan_handle_mul_overflow
|
||||
INT_MAX * INT_MAX;
|
||||
INT_MIN * INT_MIN;
|
||||
|
||||
// CHECK: call void @__ubsan_handle_divrem_overflow
|
||||
// CHECK: call void @__ubsan_handle_divrem_overflow
|
||||
1 / 0;
|
||||
INT_MIN / -1;
|
||||
|
||||
// CHECK: call void @__ubsan_handle_divrem_overflow
|
||||
// CHECK: call void @__ubsan_handle_divrem_overflow
|
||||
1 % 0;
|
||||
INT_MIN % -1;
|
||||
|
||||
// CHECK: call void @__ubsan_handle_divrem_overflow
|
||||
1.0 / 0.0;
|
||||
}
|
Loading…
Reference in New Issue