[ubsan] Skip overflow checks on safe arithmetic (fixes PR32874)

Currently, ubsan emits overflow checks for arithmetic that is known to
be safe at compile-time, e.g:

  1 + 1 => CheckedAdd(1, 1)

This leads to breakage when using the __builtin_prefetch intrinsic. LLVM
expects the arguments to @llvm.prefetch to be constant integers, and
when ubsan inserts unnecessary checks on the operands to the intrinsic,
this contract is broken, leading to verifier failures (see PR32874).

Instead of special-casing __builtin_prefetch for ubsan, this patch fixes
the underlying problem, i.e that clang currently emits unnecessary
overflow checks.

Testing: I ran the check-clang and check-ubsan targets with a stage2,
ubsan-enabled build of clang. I added a regression test for PR32874, and
some extra checking to make sure we don't regress runtime checking for
unsafe arithmetic. The existing ubsan-promoted-arithmetic.cpp test also
provides coverage for this change.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@301988 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vedant Kumar 2017-05-02 23:46:56 +00:00
parent e28cd553dd
commit 424867959d
2 changed files with 139 additions and 8 deletions

View File

@ -51,6 +51,64 @@ struct BinOpInfo {
BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
FPOptions FPFeatures;
const Expr *E; // Entire expr, for error unsupported. May not be binop.
/// Check if the binop can result in integer overflow.
bool mayHaveIntegerOverflow() const {
// Without constant input, we can't rule out overflow.
const auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
const auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
if (!LHSCI || !RHSCI)
return true;
// Assume overflow is possible, unless we can prove otherwise.
bool Overflow = true;
const auto &LHSAP = LHSCI->getValue();
const auto &RHSAP = RHSCI->getValue();
if (Opcode == BO_Add) {
if (Ty->hasSignedIntegerRepresentation())
(void)LHSAP.sadd_ov(RHSAP, Overflow);
else
(void)LHSAP.uadd_ov(RHSAP, Overflow);
} else if (Opcode == BO_Sub) {
if (Ty->hasSignedIntegerRepresentation())
(void)LHSAP.ssub_ov(RHSAP, Overflow);
else
(void)LHSAP.usub_ov(RHSAP, Overflow);
} else if (Opcode == BO_Mul) {
if (Ty->hasSignedIntegerRepresentation())
(void)LHSAP.smul_ov(RHSAP, Overflow);
else
(void)LHSAP.umul_ov(RHSAP, Overflow);
} else if (Opcode == BO_Div || Opcode == BO_Rem) {
if (Ty->hasSignedIntegerRepresentation() && !RHSCI->isZero())
(void)LHSAP.sdiv_ov(RHSAP, Overflow);
else
return false;
}
return Overflow;
}
/// Check if the binop computes a division or a remainder.
bool isDivisionLikeOperation() const {
return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
Opcode == BO_RemAssign;
}
/// Check if the binop can result in an integer division by zero.
bool mayHaveIntegerDivisionByZero() const {
if (isDivisionLikeOperation())
if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
return CI->isZero();
return true;
}
/// Check if the binop can result in a float division by zero.
bool mayHaveFloatDivisionByZero() const {
if (isDivisionLikeOperation())
if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
return CFP->isZero();
return true;
}
};
static bool MustVisitNullValue(const Expr *E) {
@ -85,9 +143,17 @@ static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
"Expected a unary or binary operator");
// If the binop has constant inputs and we can prove there is no overflow,
// we can elide the overflow check.
if (!Op.mayHaveIntegerOverflow())
return true;
// If a unary op has a widened operand, the op cannot overflow.
if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
// We usually don't need overflow checks for binops with widened operands.
// Multiplication with promoted unsigned operands is a special case.
const auto *BO = cast<BinaryOperator>(Op.E);
auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
if (!OptionalLHSTy)
@ -100,14 +166,14 @@ static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
QualType LHSTy = *OptionalLHSTy;
QualType RHSTy = *OptionalRHSTy;
// We usually don't need overflow checks for binary operations with widened
// operands. Multiplication with promoted unsigned operands is a special case.
// This is the simple case: binops without unsigned multiplication, and with
// widened operands. No overflow check is needed here.
if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
!LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
return true;
// The overflow check can be skipped if either one of the unpromoted types
// are less than half the size of the promoted type.
// For unsigned multiplication the overflow check can be elided if either one
// of the unpromoted types are less than half the size of the promoted type.
unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
(2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
@ -2377,7 +2443,8 @@ void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
const auto *BO = cast<BinaryOperator>(Ops.E);
if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
Ops.Ty->hasSignedIntegerRepresentation() &&
!IsWidenedIntegerOp(CGF.getContext(), BO->getLHS())) {
!IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
Ops.mayHaveIntegerOverflow()) {
llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
llvm::Value *IntMin =
@ -2400,11 +2467,13 @@ Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
Ops.Ty->isIntegerType()) {
Ops.Ty->isIntegerType() &&
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
} else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
Ops.Ty->isRealFloatingType()) {
Ops.Ty->isRealFloatingType() &&
Ops.mayHaveFloatDivisionByZero()) {
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
@ -2439,7 +2508,8 @@ Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
// Rem in C can't be a floating point type: C99 6.5.5p2.
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
Ops.Ty->isIntegerType()) {
Ops.Ty->isIntegerType() &&
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);

61
test/CodeGen/PR32874.c Normal file
View File

@ -0,0 +1,61 @@
// RUN: %clang_cc1 -x c -S -emit-llvm -o - -triple x86_64-apple-darwin10 %s \
// RUN: -w -fsanitize=signed-integer-overflow,unsigned-integer-overflow,integer-divide-by-zero,float-divide-by-zero \
// RUN: | FileCheck %s
// CHECK-LABEL: define void @foo
// CHECK-NOT: !nosanitize
void foo(const int *p) {
// __builtin_prefetch expects its optional arguments to be constant integers.
// Check that ubsan does not instrument any safe arithmetic performed in
// operands to __builtin_prefetch. (A clang frontend check should reject
// unsafe arithmetic in these operands.)
__builtin_prefetch(p, 0 + 1, 0 + 3);
__builtin_prefetch(p, 1 - 0, 3 - 0);
__builtin_prefetch(p, 1 * 1, 1 * 3);
__builtin_prefetch(p, 1 / 1, 3 / 1);
__builtin_prefetch(p, 3 % 2, 3 % 1);
__builtin_prefetch(p, 0U + 1U, 0U + 3U);
__builtin_prefetch(p, 1U - 0U, 3U - 0U);
__builtin_prefetch(p, 1U * 1U, 1U * 3U);
__builtin_prefetch(p, 1U / 1U, 3U / 1U);
__builtin_prefetch(p, 3U % 2U, 3U % 1U);
}
// CHECK-LABEL: define void @ub_constant_arithmetic
void ub_constant_arithmetic() {
// Check that we still instrument unsafe arithmetic, even if it is known to
// be unsafe at compile time.
int INT_MIN = 0xffffffff;
int INT_MAX = 0x7fffffff;
// CHECK: call void @__ubsan_handle_add_overflow
// CHECK: call void @__ubsan_handle_add_overflow
INT_MAX + 1;
INT_MAX + -1;
// CHECK: call void @__ubsan_handle_negate_overflow
// CHECK: call void @__ubsan_handle_sub_overflow
-INT_MIN;
-INT_MAX - 2;
// CHECK: call void @__ubsan_handle_mul_overflow
// CHECK: call void @__ubsan_handle_mul_overflow
INT_MAX * INT_MAX;
INT_MIN * INT_MIN;
// CHECK: call void @__ubsan_handle_divrem_overflow
// CHECK: call void @__ubsan_handle_divrem_overflow
1 / 0;
INT_MIN / -1;
// CHECK: call void @__ubsan_handle_divrem_overflow
// CHECK: call void @__ubsan_handle_divrem_overflow
1 % 0;
INT_MIN % -1;
// CHECK: call void @__ubsan_handle_divrem_overflow
1.0 / 0.0;
}