55 lines
1.7 KiB
Rust
55 lines
1.7 KiB
Rust
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
|
|
use candle::{DType, Device, Module, Tensor};
|
|
use candle_nn::{Conv2d, Conv2dConfig};
|
|
use criterion::{black_box, criterion_group, Criterion};
|
|
use std::time::Instant;
|
|
|
|
const B: usize = 1;
|
|
const C: usize = 1;
|
|
const M: usize = 128;
|
|
const K: usize = 128;
|
|
const K_SIZE: usize = 3;
|
|
|
|
fn run(input: Tensor, weight: Tensor, bias: Tensor, config: Conv2dConfig) {
|
|
Conv2d::new(weight, Some(bias), config)
|
|
.forward(&input)
|
|
.unwrap();
|
|
}
|
|
|
|
fn run_conv2d_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
|
|
let weight = Tensor::ones((1, 1, K_SIZE, K_SIZE), dtype, device)
|
|
.unwrap()
|
|
.to_dtype(dtype)
|
|
.unwrap();
|
|
let bias = Tensor::zeros(K, dtype, device).unwrap();
|
|
let input = Tensor::ones((B, C, M, K), dtype, device).unwrap();
|
|
|
|
let mut group = c.benchmark_group(device.bench_name(name));
|
|
group.bench_function("iter", move |b| {
|
|
b.iter_custom(|iters| {
|
|
let start = Instant::now();
|
|
for _i in 0..iters {
|
|
run(
|
|
black_box(input.clone()),
|
|
black_box(weight.clone()),
|
|
black_box(bias.clone()),
|
|
Default::default(),
|
|
);
|
|
}
|
|
device.sync().unwrap();
|
|
start.elapsed()
|
|
})
|
|
});
|
|
group.finish();
|
|
}
|
|
|
|
fn criterion_benchmark(c: &mut Criterion) {
|
|
let device = BenchDeviceHandler::new().unwrap();
|
|
for d in device.devices {
|
|
run_conv2d_benchmark(c, &d, DType::F32, "conv2d_f32");
|
|
run_conv2d_benchmark(c, &d, DType::F16, "conv2d_f16");
|
|
}
|
|
}
|
|
|
|
criterion_group!(benches, criterion_benchmark);
|