candle/candle-examples/examples/reinforcement-learning/policy_gradient.rs

147 lines
4.4 KiB
Rust

use super::gym_env::{GymEnv, Step};
use candle::{DType, Device, Error, Module, Result, Tensor};
use candle_nn::{
linear, ops::log_softmax, ops::softmax, sequential::seq, Activation, AdamW, Optimizer,
ParamsAdamW, VarBuilder, VarMap,
};
use rand::{distributions::Distribution, rngs::ThreadRng, Rng};
fn new_model(
input_shape: &[usize],
num_actions: usize,
dtype: DType,
device: &Device,
) -> Result<(impl Module, VarMap)> {
let input_size = input_shape.iter().product();
let mut varmap = VarMap::new();
let var_builder = VarBuilder::from_varmap(&varmap, dtype, device);
let model = seq()
.add(linear(input_size, 32, var_builder.pp("lin1"))?)
.add(Activation::Relu)
.add(linear(32, num_actions, var_builder.pp("lin2"))?);
Ok((model, varmap))
}
fn accumulate_rewards(steps: &[Step<i64>]) -> Vec<f64> {
let mut rewards: Vec<f64> = steps.iter().map(|s| s.reward).collect();
let mut acc_reward = 0f64;
for (i, reward) in rewards.iter_mut().enumerate().rev() {
if steps[i].terminated {
acc_reward = 0.0;
}
acc_reward += *reward;
*reward = acc_reward;
}
rewards
}
fn weighted_sample(probs: Vec<f32>, rng: &mut ThreadRng) -> Result<usize> {
let distribution = rand::distributions::WeightedIndex::new(probs).map_err(Error::wrap)?;
let mut rng = rng;
Ok(distribution.sample(&mut rng))
}
pub fn run() -> Result<()> {
let env = GymEnv::new("CartPole-v1")?;
println!("action space: {:?}", env.action_space());
println!("observation space: {:?}", env.observation_space());
let (model, varmap) = new_model(
env.observation_space(),
env.action_space(),
DType::F32,
&Device::Cpu,
)?;
let optimizer_params = ParamsAdamW {
lr: 0.01,
weight_decay: 0.01,
..Default::default()
};
let mut optimizer = AdamW::new(varmap.all_vars(), optimizer_params)?;
let mut rng = rand::thread_rng();
for epoch_idx in 0..100 {
let mut state = env.reset(rng.gen::<u64>())?;
let mut steps: Vec<Step<i64>> = vec![];
loop {
let action = {
let action_probs: Vec<f32> =
softmax(&model.forward(&state.detach().unsqueeze(0)?)?, 1)?
.squeeze(0)?
.to_vec1()?;
weighted_sample(action_probs, &mut rng)? as i64
};
let step = env.step(action)?;
steps.push(step.copy_with_obs(&state));
if step.terminated || step.truncated {
state = env.reset(rng.gen::<u64>())?;
if steps.len() > 5000 {
break;
}
} else {
state = step.state;
}
}
let total_reward: f64 = steps.iter().map(|s| s.reward).sum();
let episodes: i64 = steps
.iter()
.map(|s| (s.terminated || s.truncated) as i64)
.sum();
println!(
"epoch: {:<3} episodes: {:<5} avg reward per episode: {:.2}",
epoch_idx,
episodes,
total_reward / episodes as f64
);
let batch_size = steps.len();
let rewards = Tensor::from_vec(accumulate_rewards(&steps), batch_size, &Device::Cpu)?
.to_dtype(DType::F32)?
.detach();
let actions_mask = {
let actions: Vec<i64> = steps.iter().map(|s| s.action).collect();
let actions_mask: Vec<Tensor> = actions
.iter()
.map(|&action| {
// One-hot encoding
let mut action_mask = vec![0.0; env.action_space()];
action_mask[action as usize] = 1.0;
Tensor::from_vec(action_mask, env.action_space(), &Device::Cpu)
.unwrap()
.to_dtype(DType::F32)
.unwrap()
})
.collect();
Tensor::stack(&actions_mask, 0)?.detach()
};
let states = {
let states: Vec<Tensor> = steps.into_iter().map(|s| s.state).collect();
Tensor::stack(&states, 0)?.detach()
};
let log_probs = actions_mask
.mul(&log_softmax(&model.forward(&states)?, 1)?)?
.sum(1)?;
let loss = rewards.mul(&log_probs)?.neg()?.mean_all()?;
optimizer.backward_step(&loss)?;
}
Ok(())
}