541 lines
18 KiB
HTML
541 lines
18 KiB
HTML
<html>
|
|
<head>
|
|
<meta content="text/html;charset=utf-8" http-equiv="Content-Type" />
|
|
<title>Candle YOLOv8 Rust/WASM</title>
|
|
</head>
|
|
<body></body>
|
|
</html>
|
|
|
|
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta charset="UTF-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
|
<style>
|
|
@import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap");
|
|
html,
|
|
body {
|
|
font-family: "Source Sans 3", sans-serif;
|
|
}
|
|
code,
|
|
output,
|
|
select,
|
|
pre {
|
|
font-family: "Source Code Pro", monospace;
|
|
}
|
|
</style>
|
|
<script src="https://cdn.tailwindcss.com"></script>
|
|
<script
|
|
src="https://cdn.jsdelivr.net/gh/huggingface/hub-js-utils/share-canvas.js"
|
|
type="module"
|
|
></script>
|
|
<script type="module">
|
|
const MODEL_BASEURL =
|
|
"https://huggingface.co/lmz/candle-yolo-v8/resolve/main/";
|
|
|
|
const MODELS = {
|
|
yolov8n: {
|
|
model_size: "n",
|
|
url: "yolov8n.safetensors",
|
|
},
|
|
yolov8s: {
|
|
model_size: "s",
|
|
url: "yolov8s.safetensors",
|
|
},
|
|
yolov8m: {
|
|
model_size: "m",
|
|
url: "yolov8m.safetensors",
|
|
},
|
|
yolov8l: {
|
|
model_size: "l",
|
|
url: "yolov8l.safetensors",
|
|
},
|
|
yolov8x: {
|
|
model_size: "x",
|
|
url: "yolov8x.safetensors",
|
|
},
|
|
yolov8n_pose: {
|
|
model_size: "n",
|
|
url: "yolov8n-pose.safetensors",
|
|
},
|
|
yolov8s_pose: {
|
|
model_size: "s",
|
|
url: "yolov8s-pose.safetensors",
|
|
},
|
|
yolov8m_pose: {
|
|
model_size: "m",
|
|
url: "yolov8m-pose.safetensors",
|
|
},
|
|
yolov8l_pose: {
|
|
model_size: "l",
|
|
url: "yolov8l-pose.safetensors",
|
|
},
|
|
yolov8x_pose: {
|
|
model_size: "x",
|
|
url: "yolov8x-pose.safetensors",
|
|
},
|
|
};
|
|
|
|
const COCO_PERSON_SKELETON = [
|
|
[4, 0], // head
|
|
[3, 0],
|
|
[16, 14], // left lower leg
|
|
[14, 12], // left upper leg
|
|
[6, 12], // left torso
|
|
[6, 5], // top torso
|
|
[6, 8], // upper arm
|
|
[8, 10], // lower arm
|
|
[1, 2], // head
|
|
[1, 3], // right head
|
|
[2, 4], // left head
|
|
[3, 5], // right neck
|
|
[4, 6], // left neck
|
|
[5, 7], // right upper arm
|
|
[7, 9], // right lower arm
|
|
[5, 11], // right torso
|
|
[11, 12], // bottom torso
|
|
[11, 13], // right upper leg
|
|
[13, 15], // right lower leg
|
|
];
|
|
|
|
// init web worker
|
|
const yoloWorker = new Worker("./yoloWorker.js", { type: "module" });
|
|
|
|
let hasImage = false;
|
|
//add event listener to image examples
|
|
document.querySelector("#image-select").addEventListener("click", (e) => {
|
|
const target = e.target;
|
|
if (target.nodeName === "IMG") {
|
|
const href = target.src;
|
|
drawImageCanvas(href);
|
|
}
|
|
});
|
|
//add event listener to file input
|
|
document.querySelector("#file-upload").addEventListener("change", (e) => {
|
|
const target = e.target;
|
|
if (target.files.length > 0) {
|
|
const href = URL.createObjectURL(target.files[0]);
|
|
drawImageCanvas(href);
|
|
}
|
|
});
|
|
// add event listener to drop-area
|
|
const dropArea = document.querySelector("#drop-area");
|
|
dropArea.addEventListener("dragenter", (e) => {
|
|
e.preventDefault();
|
|
dropArea.classList.add("border-blue-700");
|
|
});
|
|
dropArea.addEventListener("dragleave", (e) => {
|
|
e.preventDefault();
|
|
dropArea.classList.remove("border-blue-700");
|
|
});
|
|
dropArea.addEventListener("dragover", (e) => {
|
|
e.preventDefault();
|
|
});
|
|
dropArea.addEventListener("drop", (e) => {
|
|
e.preventDefault();
|
|
dropArea.classList.remove("border-blue-700");
|
|
const url = e.dataTransfer.getData("text/uri-list");
|
|
const files = e.dataTransfer.files;
|
|
|
|
if (files.length > 0) {
|
|
const href = URL.createObjectURL(files[0]);
|
|
drawImageCanvas(href);
|
|
} else if (url) {
|
|
drawImageCanvas(url);
|
|
}
|
|
});
|
|
|
|
document.querySelector("#clear-btn").addEventListener("click", () => {
|
|
drawImageCanvas();
|
|
});
|
|
|
|
function drawImageCanvas(imgURL) {
|
|
const canvas = document.querySelector("#canvas");
|
|
const canvasResult = document.querySelector("#canvas-result");
|
|
canvasResult
|
|
.getContext("2d")
|
|
.clearRect(0, 0, canvas.width, canvas.height);
|
|
const ctx = canvas.getContext("2d");
|
|
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
|
document.querySelector("#share-btn").classList.add("invisible");
|
|
document.querySelector("#clear-btn").classList.add("invisible");
|
|
document.querySelector("#detect").disabled = true;
|
|
hasImage = false;
|
|
canvas.parentElement.style.height = "auto";
|
|
|
|
if (imgURL && imgURL !== "") {
|
|
const img = new Image();
|
|
img.crossOrigin = "anonymous";
|
|
|
|
img.onload = () => {
|
|
canvas.width = img.width;
|
|
canvas.height = img.height;
|
|
ctx.drawImage(img, 0, 0);
|
|
|
|
canvas.parentElement.style.height = canvas.offsetHeight + "px";
|
|
hasImage = true;
|
|
document.querySelector("#detect").disabled = false;
|
|
document.querySelector("#clear-btn").classList.remove("invisible");
|
|
};
|
|
img.src = imgURL;
|
|
}
|
|
}
|
|
|
|
async function classifyImage(
|
|
imageURL, // URL of image to classify
|
|
modelID, // ID of model to use
|
|
modelURL, // URL to model file
|
|
modelSize, // size of model
|
|
confidence, // confidence threshold
|
|
iou_threshold, // IoU threshold
|
|
updateStatus // function receives status updates
|
|
) {
|
|
return new Promise((resolve, reject) => {
|
|
yoloWorker.postMessage({
|
|
imageURL,
|
|
modelID,
|
|
modelURL,
|
|
modelSize,
|
|
confidence,
|
|
iou_threshold,
|
|
});
|
|
function handleMessage(event) {
|
|
console.log("message", event.data);
|
|
if ("status" in event.data) {
|
|
updateStatus(event.data.status);
|
|
}
|
|
if ("error" in event.data) {
|
|
yoloWorker.removeEventListener("message", handleMessage);
|
|
reject(new Error(event.data.error));
|
|
}
|
|
if (event.data.status === "complete") {
|
|
yoloWorker.removeEventListener("message", handleMessage);
|
|
resolve(event.data);
|
|
}
|
|
}
|
|
yoloWorker.addEventListener("message", handleMessage);
|
|
});
|
|
}
|
|
// add event listener to detect button
|
|
document.querySelector("#detect").addEventListener("click", async () => {
|
|
if (!hasImage) {
|
|
return;
|
|
}
|
|
const modelID = document.querySelector("#model").value;
|
|
const modelURL = MODEL_BASEURL + MODELS[modelID].url;
|
|
const modelSize = MODELS[modelID].model_size;
|
|
const confidence = parseFloat(
|
|
document.querySelector("#confidence").value
|
|
);
|
|
const iou_threshold = parseFloat(
|
|
document.querySelector("#iou_threshold").value
|
|
);
|
|
|
|
const canvasInput = document.querySelector("#canvas");
|
|
const canvas = document.querySelector("#canvas-result");
|
|
canvas.width = canvasInput.width;
|
|
canvas.height = canvasInput.height;
|
|
|
|
const scale = canvas.width / canvas.offsetWidth;
|
|
|
|
const ctx = canvas.getContext("2d");
|
|
ctx.drawImage(canvasInput, 0, 0);
|
|
const imageURL = canvas.toDataURL();
|
|
|
|
const results = await await classifyImage(
|
|
imageURL,
|
|
modelID,
|
|
modelURL,
|
|
modelSize,
|
|
confidence,
|
|
iou_threshold,
|
|
updateStatus
|
|
);
|
|
|
|
const { output } = results;
|
|
|
|
ctx.lineWidth = 1 + 2 * scale;
|
|
ctx.strokeStyle = "#3c8566";
|
|
ctx.fillStyle = "#0dff9a";
|
|
const fontSize = 14 * scale;
|
|
ctx.font = `${fontSize}px sans-serif`;
|
|
for (const detection of output) {
|
|
// check keypoint for pose model data
|
|
let xmin, xmax, ymin, ymax, label, confidence, keypoints;
|
|
if ("keypoints" in detection) {
|
|
xmin = detection.xmin;
|
|
xmax = detection.xmax;
|
|
ymin = detection.ymin;
|
|
ymax = detection.ymax;
|
|
confidence = detection.confidence;
|
|
keypoints = detection.keypoints;
|
|
} else {
|
|
const [_label, bbox] = detection;
|
|
label = _label;
|
|
xmin = bbox.xmin;
|
|
xmax = bbox.xmax;
|
|
ymin = bbox.ymin;
|
|
ymax = bbox.ymax;
|
|
confidence = bbox.confidence;
|
|
}
|
|
const [x, y, w, h] = [xmin, ymin, xmax - xmin, ymax - ymin];
|
|
|
|
const text = `${label ? label + " " : ""}${confidence.toFixed(2)}`;
|
|
const width = ctx.measureText(text).width;
|
|
ctx.fillStyle = "#3c8566";
|
|
ctx.fillRect(x - 2, y - fontSize, width + 4, fontSize);
|
|
ctx.fillStyle = "#e3fff3";
|
|
|
|
ctx.strokeRect(x, y, w, h);
|
|
ctx.fillText(text, x, y - 2);
|
|
if (keypoints) {
|
|
ctx.save();
|
|
ctx.fillStyle = "magenta";
|
|
ctx.strokeStyle = "yellow";
|
|
|
|
for (const keypoint of keypoints) {
|
|
const { x, y } = keypoint;
|
|
ctx.beginPath();
|
|
ctx.arc(x, y, 3, 0, 2 * Math.PI);
|
|
ctx.fill();
|
|
}
|
|
ctx.beginPath();
|
|
for (const [xid, yid] of COCO_PERSON_SKELETON) {
|
|
//draw line between skeleton keypoitns
|
|
if (keypoints[xid] && keypoints[yid]) {
|
|
ctx.moveTo(keypoints[xid].x, keypoints[xid].y);
|
|
ctx.lineTo(keypoints[yid].x, keypoints[yid].y);
|
|
}
|
|
}
|
|
ctx.stroke();
|
|
ctx.restore();
|
|
}
|
|
}
|
|
});
|
|
|
|
function updateStatus(statusMessage) {
|
|
const button = document.querySelector("#detect");
|
|
if (statusMessage === "detecting") {
|
|
button.disabled = true;
|
|
button.classList.add("bg-blue-700");
|
|
button.classList.remove("bg-blue-950");
|
|
button.textContent = "Predicting...";
|
|
} else if (statusMessage === "complete") {
|
|
button.disabled = false;
|
|
button.classList.add("bg-blue-950");
|
|
button.classList.remove("bg-blue-700");
|
|
button.textContent = "Predict";
|
|
document.querySelector("#share-btn").classList.remove("invisible");
|
|
}
|
|
}
|
|
document.querySelector("#share-btn").addEventListener("click", () => {
|
|
shareToCommunity(
|
|
"lmz/candle-yolo",
|
|
"Candle + YOLOv8",
|
|
"YOLOv8 with [Candle](https://github.com/huggingface/candle)",
|
|
"canvas-result",
|
|
"share-btn"
|
|
);
|
|
});
|
|
</script>
|
|
</head>
|
|
<body class="container max-w-4xl mx-auto p-4">
|
|
<main class="grid grid-cols-1 gap-8 relative">
|
|
<span class="absolute text-5xl -ml-[1em]"> 🕯️ </span>
|
|
<div>
|
|
<h1 class="text-5xl font-bold">Candle YOLOv8</h1>
|
|
<h2 class="text-2xl font-bold">Rust/WASM Demo</h2>
|
|
<p class="max-w-lg">
|
|
This demo showcases object detection and pose estimation models in
|
|
your browser using Rust/WASM. It utilizes
|
|
<a
|
|
href="https://huggingface.co/lmz/candle-yolo-v8"
|
|
target="_blank"
|
|
class="underline hover:text-blue-500 hover:no-underline"
|
|
>
|
|
safetensor's YOLOv8 models
|
|
</a>
|
|
and a WASM runtime built with
|
|
<a
|
|
href="https://github.com/huggingface/candle/"
|
|
target="_blank"
|
|
class="underline hover:text-blue-500 hover:no-underline"
|
|
>Candle </a
|
|
>.
|
|
</p>
|
|
<p>
|
|
To run pose estimation, select a yolo pose model from the dropdown
|
|
</p>
|
|
</div>
|
|
|
|
<div>
|
|
<label for="model" class="font-medium">Models Options: </label>
|
|
<select
|
|
id="model"
|
|
class="border-2 border-gray-500 rounded-md font-light"
|
|
>
|
|
<option value="yolov8n" selected>yolov8n (6.37 MB)</option>
|
|
<option value="yolov8s">yolov8s (22.4 MB)</option>
|
|
<option value="yolov8m">yolov8m (51.9 MB)</option>
|
|
<option value="yolov8l">yolov8l (87.5 MB)</option>
|
|
<option value="yolov8x">yolov8x (137 MB)</option>
|
|
<!-- Pose models -->
|
|
<option value="yolov8n_pose">yolov8n_pose (6.65 MB)</option>
|
|
<option value="yolov8s_pose">yolov8s_pose (23.3 MB)</option>
|
|
<option value="yolov8m_pose">yolov8m_pose (53 MB)</option>
|
|
<option value="yolov8l_pose">yolov8l_pose (89.1 MB)</option>
|
|
<option value="yolov8x_pose">yolov8x_pose (139 MB)</option>
|
|
</select>
|
|
</div>
|
|
<div>
|
|
<button
|
|
id="detect"
|
|
disabled
|
|
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 px-4 rounded disabled:bg-gray-300 disabled:cursor-not-allowed"
|
|
>
|
|
Predict
|
|
</button>
|
|
</div>
|
|
<!-- drag and drop area -->
|
|
<div class="relative max-w-lg">
|
|
<div class="py-1">
|
|
<button
|
|
id="clear-btn"
|
|
class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center ml-auto invisible"
|
|
>
|
|
<svg
|
|
class=""
|
|
xmlns="http://www.w3.org/2000/svg"
|
|
viewBox="0 0 13 12"
|
|
height="1em"
|
|
>
|
|
<path
|
|
d="M1.6.7 12 11.1M12 .7 1.6 11.1"
|
|
stroke="#2E3036"
|
|
stroke-width="2"
|
|
/>
|
|
</svg>
|
|
Clear image
|
|
</button>
|
|
</div>
|
|
<div
|
|
id="drop-area"
|
|
class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative aspect-video w-full overflow-hidden"
|
|
>
|
|
<div
|
|
class="flex flex-col items-center justify-center space-y-1 text-center"
|
|
>
|
|
<svg
|
|
width="25"
|
|
height="25"
|
|
viewBox="0 0 25 25"
|
|
fill="none"
|
|
xmlns="http://www.w3.org/2000/svg"
|
|
>
|
|
<path
|
|
d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z"
|
|
fill="#000"
|
|
/>
|
|
</svg>
|
|
<div class="flex text-sm text-gray-600">
|
|
<label
|
|
for="file-upload"
|
|
class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700"
|
|
>
|
|
<span>Drag and drop your image here</span>
|
|
<span class="block text-xs">or</span>
|
|
<span class="block text-xs">Click to upload</span>
|
|
</label>
|
|
</div>
|
|
<input
|
|
id="file-upload"
|
|
name="file-upload"
|
|
type="file"
|
|
class="sr-only"
|
|
/>
|
|
</div>
|
|
<canvas
|
|
id="canvas"
|
|
class="absolute pointer-events-none w-full"
|
|
></canvas>
|
|
<canvas
|
|
id="canvas-result"
|
|
class="absolute pointer-events-none w-full"
|
|
></canvas>
|
|
</div>
|
|
<div class="text-right py-2">
|
|
<button
|
|
id="share-btn"
|
|
class="bg-white rounded-md hover:outline outline-orange-200 disabled:opacity-50 invisible"
|
|
>
|
|
<img
|
|
src="https://huggingface.co/datasets/huggingface/badges/raw/main/share-to-community-sm.svg"
|
|
/>
|
|
</button>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<div
|
|
class="flex gap-3 items-center overflow-x-scroll"
|
|
id="image-select"
|
|
>
|
|
<h3 class="font-medium">Examples:</h3>
|
|
|
|
<img
|
|
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg"
|
|
class="cursor-pointer w-24 h-24 object-cover"
|
|
/>
|
|
<img
|
|
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg"
|
|
class="cursor-pointer w-24 h-24 object-cover"
|
|
/>
|
|
<img
|
|
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg"
|
|
class="cursor-pointer w-24 h-24 object-cover"
|
|
/>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<div class="grid grid-cols-3 max-w-md items-center gap-3">
|
|
<label class="text-sm font-medium" for="confidence"
|
|
>Confidence Threshold</label
|
|
>
|
|
<input
|
|
type="range"
|
|
id="confidence"
|
|
name="confidence"
|
|
min="0"
|
|
max="1"
|
|
step="0.01"
|
|
value="0.25"
|
|
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)"
|
|
/>
|
|
<output
|
|
class="text-xs font-light px-1 py-1 border border-gray-700 rounded-md w-min"
|
|
>0.25</output
|
|
>
|
|
|
|
<label class="text-sm font-medium" for="iou_threshold"
|
|
>IoU Threshold</label
|
|
>
|
|
|
|
<input
|
|
type="range"
|
|
id="iou_threshold"
|
|
name="iou_threshold"
|
|
min="0"
|
|
max="1"
|
|
step="0.01"
|
|
value="0.45"
|
|
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)"
|
|
/>
|
|
<output
|
|
class="font-extralight text-xs px-1 py-1 border border-gray-700 rounded-md w-min"
|
|
>0.45</output
|
|
>
|
|
</div>
|
|
</div>
|
|
</main>
|
|
</body>
|
|
</html>
|