147 lines
4.4 KiB
Rust
147 lines
4.4 KiB
Rust
use super::gym_env::{GymEnv, Step};
|
|
use candle::{DType, Device, Error, Module, Result, Tensor};
|
|
use candle_nn::{
|
|
linear, ops::log_softmax, ops::softmax, sequential::seq, Activation, AdamW, Optimizer,
|
|
ParamsAdamW, VarBuilder, VarMap,
|
|
};
|
|
use rand::{distributions::Distribution, rngs::ThreadRng, Rng};
|
|
|
|
fn new_model(
|
|
input_shape: &[usize],
|
|
num_actions: usize,
|
|
dtype: DType,
|
|
device: &Device,
|
|
) -> Result<(impl Module, VarMap)> {
|
|
let input_size = input_shape.iter().product();
|
|
|
|
let mut varmap = VarMap::new();
|
|
let var_builder = VarBuilder::from_varmap(&varmap, dtype, device);
|
|
|
|
let model = seq()
|
|
.add(linear(input_size, 32, var_builder.pp("lin1"))?)
|
|
.add(Activation::Relu)
|
|
.add(linear(32, num_actions, var_builder.pp("lin2"))?);
|
|
|
|
Ok((model, varmap))
|
|
}
|
|
|
|
fn accumulate_rewards(steps: &[Step<i64>]) -> Vec<f64> {
|
|
let mut rewards: Vec<f64> = steps.iter().map(|s| s.reward).collect();
|
|
let mut acc_reward = 0f64;
|
|
for (i, reward) in rewards.iter_mut().enumerate().rev() {
|
|
if steps[i].terminated {
|
|
acc_reward = 0.0;
|
|
}
|
|
acc_reward += *reward;
|
|
*reward = acc_reward;
|
|
}
|
|
rewards
|
|
}
|
|
|
|
fn weighted_sample(probs: Vec<f32>, rng: &mut ThreadRng) -> Result<usize> {
|
|
let distribution = rand::distributions::WeightedIndex::new(probs).map_err(Error::wrap)?;
|
|
let mut rng = rng;
|
|
Ok(distribution.sample(&mut rng))
|
|
}
|
|
|
|
pub fn run() -> Result<()> {
|
|
let env = GymEnv::new("CartPole-v1")?;
|
|
|
|
println!("action space: {:?}", env.action_space());
|
|
println!("observation space: {:?}", env.observation_space());
|
|
|
|
let (model, varmap) = new_model(
|
|
env.observation_space(),
|
|
env.action_space(),
|
|
DType::F32,
|
|
&Device::Cpu,
|
|
)?;
|
|
|
|
let optimizer_params = ParamsAdamW {
|
|
lr: 0.01,
|
|
weight_decay: 0.01,
|
|
..Default::default()
|
|
};
|
|
|
|
let mut optimizer = AdamW::new(varmap.all_vars(), optimizer_params)?;
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
for epoch_idx in 0..100 {
|
|
let mut state = env.reset(rng.gen::<u64>())?;
|
|
let mut steps: Vec<Step<i64>> = vec![];
|
|
|
|
loop {
|
|
let action = {
|
|
let action_probs: Vec<f32> =
|
|
softmax(&model.forward(&state.detach()?.unsqueeze(0)?)?, 1)?
|
|
.squeeze(0)?
|
|
.to_vec1()?;
|
|
weighted_sample(action_probs, &mut rng)? as i64
|
|
};
|
|
|
|
let step = env.step(action)?;
|
|
steps.push(step.copy_with_obs(&state));
|
|
|
|
if step.terminated || step.truncated {
|
|
state = env.reset(rng.gen::<u64>())?;
|
|
if steps.len() > 5000 {
|
|
break;
|
|
}
|
|
} else {
|
|
state = step.state;
|
|
}
|
|
}
|
|
|
|
let total_reward: f64 = steps.iter().map(|s| s.reward).sum();
|
|
let episodes: i64 = steps
|
|
.iter()
|
|
.map(|s| (s.terminated || s.truncated) as i64)
|
|
.sum();
|
|
println!(
|
|
"epoch: {:<3} episodes: {:<5} avg reward per episode: {:.2}",
|
|
epoch_idx,
|
|
episodes,
|
|
total_reward / episodes as f64
|
|
);
|
|
|
|
let batch_size = steps.len();
|
|
|
|
let rewards = Tensor::from_vec(accumulate_rewards(&steps), batch_size, &Device::Cpu)?
|
|
.to_dtype(DType::F32)?
|
|
.detach()?;
|
|
|
|
let actions_mask = {
|
|
let actions: Vec<i64> = steps.iter().map(|s| s.action).collect();
|
|
let actions_mask: Vec<Tensor> = actions
|
|
.iter()
|
|
.map(|&action| {
|
|
// One-hot encoding
|
|
let mut action_mask = vec![0.0; env.action_space()];
|
|
action_mask[action as usize] = 1.0;
|
|
|
|
Tensor::from_vec(action_mask, env.action_space(), &Device::Cpu)
|
|
.unwrap()
|
|
.to_dtype(DType::F32)
|
|
.unwrap()
|
|
})
|
|
.collect();
|
|
Tensor::stack(&actions_mask, 0)?.detach()?
|
|
};
|
|
|
|
let states = {
|
|
let states: Vec<Tensor> = steps.into_iter().map(|s| s.state).collect();
|
|
Tensor::stack(&states, 0)?.detach()?
|
|
};
|
|
|
|
let log_probs = actions_mask
|
|
.mul(&log_softmax(&model.forward(&states)?, 1)?)?
|
|
.sum(1)?;
|
|
|
|
let loss = rewards.mul(&log_probs)?.neg()?.mean_all()?;
|
|
optimizer.backward_step(&loss)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|