213 lines
7.6 KiB
Rust
213 lines
7.6 KiB
Rust
#[cfg(feature = "mkl")]
|
|
extern crate intel_mkl_src;
|
|
|
|
#[cfg(feature = "accelerate")]
|
|
extern crate accelerate_src;
|
|
use candle_transformers::models::bert::{BertModel, Config, HiddenAct, DTYPE};
|
|
|
|
use anyhow::{Error as E, Result};
|
|
use candle::Tensor;
|
|
use candle_nn::VarBuilder;
|
|
use clap::Parser;
|
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
|
use tokenizers::{PaddingParams, Tokenizer};
|
|
|
|
#[derive(Parser, Debug)]
|
|
#[command(author, version, about, long_about = None)]
|
|
struct Args {
|
|
/// Run on CPU rather than on GPU.
|
|
#[arg(long)]
|
|
cpu: bool,
|
|
|
|
/// Enable tracing (generates a trace-timestamp.json file).
|
|
#[arg(long)]
|
|
tracing: bool,
|
|
|
|
/// The model to use, check out available models: https://huggingface.co/models?library=sentence-transformers&sort=trending
|
|
#[arg(long)]
|
|
model_id: Option<String>,
|
|
|
|
#[arg(long)]
|
|
revision: Option<String>,
|
|
|
|
/// When set, compute embeddings for this prompt.
|
|
#[arg(long)]
|
|
prompt: Option<String>,
|
|
|
|
/// Use the pytorch weights rather than the safetensors ones
|
|
#[arg(long)]
|
|
use_pth: bool,
|
|
|
|
/// The number of times to run the prompt.
|
|
#[arg(long, default_value = "1")]
|
|
n: usize,
|
|
|
|
/// L2 normalization for embeddings.
|
|
#[arg(long, default_value = "true")]
|
|
normalize_embeddings: bool,
|
|
|
|
/// Use tanh based approximation for Gelu instead of erf implementation.
|
|
#[arg(long, default_value = "false")]
|
|
approximate_gelu: bool,
|
|
}
|
|
|
|
impl Args {
|
|
fn build_model_and_tokenizer(&self) -> Result<(BertModel, Tokenizer)> {
|
|
let device = candle_examples::device(self.cpu)?;
|
|
let default_model = "sentence-transformers/all-MiniLM-L6-v2".to_string();
|
|
let default_revision = "refs/pr/21".to_string();
|
|
let (model_id, revision) = match (self.model_id.to_owned(), self.revision.to_owned()) {
|
|
(Some(model_id), Some(revision)) => (model_id, revision),
|
|
(Some(model_id), None) => (model_id, "main".to_string()),
|
|
(None, Some(revision)) => (default_model, revision),
|
|
(None, None) => (default_model, default_revision),
|
|
};
|
|
|
|
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
|
|
let (config_filename, tokenizer_filename, weights_filename) = {
|
|
let api = Api::new()?;
|
|
let api = api.repo(repo);
|
|
let config = api.get("config.json")?;
|
|
let tokenizer = api.get("tokenizer.json")?;
|
|
let weights = if self.use_pth {
|
|
api.get("pytorch_model.bin")?
|
|
} else {
|
|
api.get("model.safetensors")?
|
|
};
|
|
(config, tokenizer, weights)
|
|
};
|
|
let config = std::fs::read_to_string(config_filename)?;
|
|
let mut config: Config = serde_json::from_str(&config)?;
|
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
|
|
|
let vb = if self.use_pth {
|
|
VarBuilder::from_pth(&weights_filename, DTYPE, &device)?
|
|
} else {
|
|
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? }
|
|
};
|
|
if self.approximate_gelu {
|
|
config.hidden_act = HiddenAct::GeluApproximate;
|
|
}
|
|
let model = BertModel::load(vb, &config)?;
|
|
Ok((model, tokenizer))
|
|
}
|
|
}
|
|
|
|
fn main() -> Result<()> {
|
|
use tracing_chrome::ChromeLayerBuilder;
|
|
use tracing_subscriber::prelude::*;
|
|
|
|
let args = Args::parse();
|
|
let _guard = if args.tracing {
|
|
println!("tracing...");
|
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
|
tracing_subscriber::registry().with(chrome_layer).init();
|
|
Some(guard)
|
|
} else {
|
|
None
|
|
};
|
|
let start = std::time::Instant::now();
|
|
|
|
let (model, mut tokenizer) = args.build_model_and_tokenizer()?;
|
|
let device = &model.device;
|
|
|
|
if let Some(prompt) = args.prompt {
|
|
let tokenizer = tokenizer
|
|
.with_padding(None)
|
|
.with_truncation(None)
|
|
.map_err(E::msg)?;
|
|
let tokens = tokenizer
|
|
.encode(prompt, true)
|
|
.map_err(E::msg)?
|
|
.get_ids()
|
|
.to_vec();
|
|
let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
|
|
let token_type_ids = token_ids.zeros_like()?;
|
|
println!("Loaded and encoded {:?}", start.elapsed());
|
|
for idx in 0..args.n {
|
|
let start = std::time::Instant::now();
|
|
let ys = model.forward(&token_ids, &token_type_ids, None)?;
|
|
if idx == 0 {
|
|
println!("{ys}");
|
|
}
|
|
println!("Took {:?}", start.elapsed());
|
|
}
|
|
} else {
|
|
let sentences = [
|
|
"The cat sits outside",
|
|
"A man is playing guitar",
|
|
"I love pasta",
|
|
"The new movie is awesome",
|
|
"The cat plays in the garden",
|
|
"A woman watches TV",
|
|
"The new movie is so great",
|
|
"Do you like pizza?",
|
|
];
|
|
let n_sentences = sentences.len();
|
|
if let Some(pp) = tokenizer.get_padding_mut() {
|
|
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
|
|
} else {
|
|
let pp = PaddingParams {
|
|
strategy: tokenizers::PaddingStrategy::BatchLongest,
|
|
..Default::default()
|
|
};
|
|
tokenizer.with_padding(Some(pp));
|
|
}
|
|
let tokens = tokenizer
|
|
.encode_batch(sentences.to_vec(), true)
|
|
.map_err(E::msg)?;
|
|
let token_ids = tokens
|
|
.iter()
|
|
.map(|tokens| {
|
|
let tokens = tokens.get_ids().to_vec();
|
|
Ok(Tensor::new(tokens.as_slice(), device)?)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let attention_mask = tokens
|
|
.iter()
|
|
.map(|tokens| {
|
|
let tokens = tokens.get_attention_mask().to_vec();
|
|
Ok(Tensor::new(tokens.as_slice(), device)?)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
let token_ids = Tensor::stack(&token_ids, 0)?;
|
|
let attention_mask = Tensor::stack(&attention_mask, 0)?;
|
|
let token_type_ids = token_ids.zeros_like()?;
|
|
println!("running inference on batch {:?}", token_ids.shape());
|
|
let embeddings = model.forward(&token_ids, &token_type_ids, Some(&attention_mask))?;
|
|
println!("generated embeddings {:?}", embeddings.shape());
|
|
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
|
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;
|
|
let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?;
|
|
let embeddings = if args.normalize_embeddings {
|
|
normalize_l2(&embeddings)?
|
|
} else {
|
|
embeddings
|
|
};
|
|
println!("pooled embeddings {:?}", embeddings.shape());
|
|
|
|
let mut similarities = vec![];
|
|
for i in 0..n_sentences {
|
|
let e_i = embeddings.get(i)?;
|
|
for j in (i + 1)..n_sentences {
|
|
let e_j = embeddings.get(j)?;
|
|
let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?;
|
|
let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?;
|
|
let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?;
|
|
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt();
|
|
similarities.push((cosine_similarity, i, j))
|
|
}
|
|
}
|
|
similarities.sort_by(|u, v| v.0.total_cmp(&u.0));
|
|
for &(score, i, j) in similarities[..5].iter() {
|
|
println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j])
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn normalize_l2(v: &Tensor) -> Result<Tensor> {
|
|
Ok(v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)?)
|
|
}
|