1299 lines
74 KiB
C++
1299 lines
74 KiB
C++
/******************************************************************************
|
|
* Copyright (c) 2024, Tri Dao.
|
|
******************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <cute/tensor.hpp>
|
|
|
|
#include <cutlass/cutlass.h>
|
|
#include <cutlass/array.h>
|
|
#include <cutlass/numeric_types.h>
|
|
|
|
#include "block_info.h"
|
|
#include "kernel_traits.h"
|
|
#include "utils.h"
|
|
#include "softmax.h"
|
|
#include "mask.h"
|
|
#include "dropout.h"
|
|
#include "rotary.h"
|
|
|
|
namespace flash {
|
|
|
|
using namespace cute;
|
|
|
|
template <typename Engine, typename Layout>
|
|
__forceinline__ __device__ void apply_softcap(Tensor<Engine, Layout> &tensor, const float softcap){
|
|
#pragma unroll
|
|
for (int i = 0; i < size(tensor); ++i) {
|
|
tensor(i) = cutlass::fast_tanh(tensor(i) * softcap);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename ElementAccum, typename Params, int kBlockM, bool Is_even_MN>
|
|
__forceinline__ __device__ auto get_lse_tile(const Params ¶ms, const int bidb, const int bidh, const int m_block, const BlockInfo</*Varlen=*/!Is_even_MN> &binfo) {
|
|
// When params.unpadded_lse is false, LSE is written as (b, h, seqlen_q) - this is non-variable seqlen path.
|
|
// Otherwise, when params.seqlenq_ngroups_swapped is true, it is written as (h, seqlen_q, b) to account for seqlen_q <-> h swapping trick.
|
|
// Otherwise, it's written as (h, b, seqlen_q).
|
|
const bool varlen_q = params.unpadded_lse && !params.seqlenq_ngroups_swapped;
|
|
auto lse_offset = varlen_q ? binfo.q_offset(params.seqlen_q, 1, bidb) : 0;
|
|
auto gmem_ptr_lse = make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr) + lse_offset);
|
|
|
|
auto lse_shape = varlen_q ? make_shape(1, params.h, params.total_q) : make_shape(params.b, params.h, params.seqlen_q);
|
|
auto lse_stride = params.seqlenq_ngroups_swapped ? make_stride(1, params.seqlen_q * params.b, params.b) : (
|
|
params.unpadded_lse ? make_stride(params.h * params.total_q, params.total_q, 1) : make_stride(params.h * params.seqlen_q, params.seqlen_q, 1)
|
|
);
|
|
|
|
auto lse_layout = make_layout(lse_shape, lse_stride);
|
|
Tensor mLSE = make_tensor(gmem_ptr_lse, lse_layout);
|
|
auto mLSE_slice = varlen_q ? mLSE(0, bidh, _) : mLSE(bidb, bidh, _);
|
|
return local_tile(mLSE_slice, Shape<Int<kBlockM>>{}, make_coord(m_block));
|
|
}
|
|
|
|
|
|
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Return_softmax, typename Params>
|
|
inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bidb, const int bidh, const int m_block) {
|
|
|
|
using Element = typename Kernel_traits::Element;
|
|
using ElementAccum = typename Kernel_traits::ElementAccum;
|
|
using index_t = typename Kernel_traits::index_t;
|
|
|
|
// Shared memory.
|
|
extern __shared__ char smem_[];
|
|
|
|
// The thread index.
|
|
const int tidx = threadIdx.x;
|
|
|
|
constexpr int kBlockM = Kernel_traits::kBlockM;
|
|
constexpr int kBlockN = Kernel_traits::kBlockN;
|
|
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
|
constexpr int kNWarps = Kernel_traits::kNWarps;
|
|
|
|
auto seed_offset = std::make_tuple(0ull, 0ull);
|
|
// auto seed_offset = at::cuda::philox::unpack(params.philox_args);
|
|
flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
|
|
bidb, bidh, tidx, params.h);
|
|
|
|
// Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
|
|
// exit early and no one saves the rng states.
|
|
if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
|
|
params.rng_state[0] = std::get<0>(seed_offset);
|
|
params.rng_state[1] = std::get<1>(seed_offset);
|
|
}
|
|
|
|
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
|
|
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
|
|
|
|
const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
|
|
int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
|
|
if (Is_causal || Is_local) {
|
|
n_block_max = std::min(n_block_max,
|
|
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
|
|
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
|
|
// printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
|
|
// }
|
|
}
|
|
// We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
|
|
// Otherwise we might read OOB elements from gK and gV.
|
|
if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
|
|
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
|
|
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
|
|
make_shape(binfo.actual_seqlen_q, params.h, params.d),
|
|
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
|
|
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
|
|
|
|
Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
|
|
|
|
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
|
|
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
|
|
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
|
|
Tensor tOrO = make_tensor<Element>(shape(tOgO));
|
|
clear(tOrO);
|
|
// Construct identity layout for sO
|
|
Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
|
|
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
|
|
}
|
|
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(tOgO); ++m) {
|
|
const int row = get<0>(tOcO(0, m, 0));
|
|
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
|
|
}
|
|
return;
|
|
}
|
|
// if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
|
|
|
|
// We iterate over the blocks in reverse order. This is because the last block is the only one
|
|
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
|
|
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
|
|
|
|
const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
|
|
+ m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;
|
|
|
|
Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)
|
|
+ binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
|
|
make_shape(binfo.actual_seqlen_q, params.h, params.d),
|
|
make_stride(params.q_row_stride, params.q_head_stride, _1{}));
|
|
Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
|
|
Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)
|
|
+ binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)),
|
|
make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
|
|
make_stride(params.k_row_stride, params.k_head_stride, _1{}));
|
|
Tensor gK = local_tile(mK(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_coord(_, 0)); // (kBlockN, kHeadDim, nblocksN)
|
|
Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)
|
|
+ binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)),
|
|
make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
|
|
make_stride(params.v_row_stride, params.v_head_stride, _1{}));
|
|
Tensor gV = local_tile(mV(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_coord(_, 0)); // (kBlockN, kHeadDim, nblocksN)
|
|
Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
|
|
Shape<Int<kBlockM>, Int<kBlockN>>{},
|
|
make_stride(params.seqlen_k_rounded, _1{}));
|
|
|
|
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
|
|
typename Kernel_traits::SmemLayoutQ{});
|
|
// Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
|
|
Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
|
|
typename Kernel_traits::SmemLayoutKV{});
|
|
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
|
|
Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
|
|
Tensor sVtNoSwizzle = make_tensor(sV.data().get(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
|
|
|
|
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
|
|
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
|
|
|
|
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
|
|
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
|
|
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K, nblocksN)
|
|
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
|
|
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K, nblocksN)
|
|
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
|
|
|
|
typename Kernel_traits::TiledMma tiled_mma;
|
|
auto thr_mma = tiled_mma.get_thread_slice(tidx);
|
|
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
|
|
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
|
|
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
|
|
|
|
Tensor tSgS = thr_mma.partition_C(gP);
|
|
|
|
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_M, MMA_K
|
|
|
|
//
|
|
// Copy Atom retiling
|
|
//
|
|
|
|
auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
|
|
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
|
|
// if (cute::thread0()) {smem_thr_copy_Q.print_all();}
|
|
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
|
|
// if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}
|
|
|
|
auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
|
|
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
|
|
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
|
|
|
|
auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
|
|
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
|
|
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
|
|
|
|
//
|
|
// PREDICATES
|
|
//
|
|
|
|
// // Allocate predicate tensors for m and n
|
|
// Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
|
|
// Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});
|
|
|
|
// Construct identity layout for sQ and sK
|
|
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
|
// Tensor tScQ = thr_mma.partition_A(cQ); // (MMA,MMA_M,MMA_K)
|
|
// if (cute::thread0()) {
|
|
// print(tScQ.layout()); printf("\n");
|
|
// for (int i = 0; i < size(tScQ); ++i) {
|
|
// printf("%d ", get<0>(tScQ(i)));
|
|
// }
|
|
// printf("\n");
|
|
// for (int i = 0; i < size(tScQ); ++i) {
|
|
// printf("%d ", get<1>(tScQ(i)));
|
|
// }
|
|
// printf("\n");
|
|
// }
|
|
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
|
|
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
|
|
|
|
// Allocate predicate tensors for k
|
|
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
|
|
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
|
|
|
|
// Set predicates for k bounds
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
|
|
}
|
|
|
|
// Prologue
|
|
|
|
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
|
|
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
|
|
binfo.actual_seqlen_q - m_block * kBlockM);
|
|
if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }
|
|
|
|
// // if (cute::thread(1, 0)) { print(tQsQ); }
|
|
// // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
|
|
// // if (cute::thread0()) { print(sQNoSwizzle); }
|
|
|
|
if (Kernel_traits::Share_Q_K_smem) {
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
|
|
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
|
|
__syncthreads();
|
|
}
|
|
|
|
int n_block = n_block_max - 1;
|
|
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
|
|
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK, tKVcKV, tKVpKV,
|
|
binfo.actual_seqlen_k - n_block * kBlockN);
|
|
cute::cp_async_fence();
|
|
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
|
|
// __syncthreads();
|
|
|
|
if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
|
|
flash::cp_async_wait<1>();
|
|
__syncthreads();
|
|
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
|
|
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
|
|
}
|
|
|
|
clear(acc_o);
|
|
|
|
flash::Softmax<2 * size<1>(acc_o)> softmax;
|
|
|
|
const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
|
|
flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
|
|
|
|
// For performance reason, we separate out two kinds of iterations:
|
|
// those that need masking on S, and those that don't.
|
|
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
|
|
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
|
|
// We will have at least 1 "masking" iteration.
|
|
|
|
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
|
|
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
|
|
constexpr int n_masking_steps = (!Is_causal && !Is_local)
|
|
? 1
|
|
: ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
|
|
#pragma unroll
|
|
for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
|
|
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
|
|
clear(acc_s);
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
|
|
// Advance gV
|
|
if (masking_step > 0) {
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
|
|
} else {
|
|
// Clear the smem tiles to account for predicated off loads
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
}
|
|
cute::cp_async_fence();
|
|
|
|
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
|
|
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
|
|
smem_thr_copy_Q, smem_thr_copy_K
|
|
);
|
|
// if (cute::thread0()) { print(acc_s); }
|
|
if constexpr (Is_softcap){
|
|
apply_softcap(acc_s, params.softcap);
|
|
}
|
|
|
|
mask.template apply_mask<Is_causal, Is_even_MN>(
|
|
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
|
|
);
|
|
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
if (n_block > n_block_min) {
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
|
|
// This cp_async_fence needs to be in the if block, otherwise the synchronization
|
|
// isn't right and we get race conditions.
|
|
cute::cp_async_fence();
|
|
}
|
|
|
|
// TODO: when we have key_padding_mask we'll need to Check_inf
|
|
masking_step == 0
|
|
? softmax.template softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2)
|
|
: softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2);
|
|
|
|
// Convert acc_s from fp32 to fp16/bf16
|
|
Tensor rP = flash::convert_type<Element>(acc_s);
|
|
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
|
|
int block_col_idx = n_block * (kBlockN / 32);
|
|
if (Return_softmax) {
|
|
Tensor rP_drop = make_fragment_like(rP);
|
|
cute::copy(rP, rP_drop);
|
|
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
|
|
rP_drop, block_row_idx, block_col_idx, kNWarps
|
|
);
|
|
cute::copy(rP_drop, tSgS);
|
|
tSgS.data() = tSgS.data() + (-kBlockN);
|
|
}
|
|
if (Is_dropout) {
|
|
dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
|
|
}
|
|
|
|
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
|
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
|
|
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
|
// if (cute::thread0()) { print(tOrP); }
|
|
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
|
|
// if (cute::thread0()) { print(scores); }
|
|
|
|
// This check is at the end of the loop since we always have at least 1 iteration
|
|
if (n_masking_steps > 1 && n_block <= n_block_min) {
|
|
--n_block;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// These are the iterations where we don't need masking on S
|
|
for (; n_block >= n_block_min; --n_block) {
|
|
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
|
|
clear(acc_s);
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
|
|
cute::cp_async_fence();
|
|
|
|
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
|
|
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
|
|
smem_thr_copy_Q, smem_thr_copy_K
|
|
);
|
|
if constexpr (Is_softcap){
|
|
apply_softcap(acc_s, params.softcap);
|
|
}
|
|
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
if (n_block > n_block_min) {
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
|
|
// This cp_async_fence needs to be in the if block, otherwise the synchronization
|
|
// isn't right and we get race conditions.
|
|
cute::cp_async_fence();
|
|
}
|
|
|
|
mask.template apply_mask</*Causal_mask=*/false>(
|
|
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
|
|
);
|
|
|
|
softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
|
|
|
|
Tensor rP = flash::convert_type<Element>(acc_s);
|
|
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
|
|
int block_col_idx = n_block * (kBlockN / 32);
|
|
if (Return_softmax) {
|
|
Tensor rP_drop = make_fragment_like(rP);
|
|
cute::copy(rP, rP_drop);
|
|
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
|
|
rP_drop, block_row_idx, block_col_idx, kNWarps
|
|
);
|
|
cute::copy(rP_drop, tSgS);
|
|
tSgS.data() = tSgS.data() + (-kBlockN);
|
|
}
|
|
if (Is_dropout) {
|
|
dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
|
|
}
|
|
|
|
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
|
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
|
|
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
|
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
|
|
}
|
|
|
|
// Epilogue
|
|
|
|
Tensor lse = softmax.template normalize_softmax_lse<Is_dropout>(acc_o, params.scale_softmax, params.rp_dropout);
|
|
|
|
// Convert acc_o from fp32 to fp16/bf16
|
|
Tensor rO = flash::convert_type<Element>(acc_o);
|
|
Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
|
|
// Partition sO to match the accumulator partitioning
|
|
auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
|
|
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
|
|
Tensor taccOrO = smem_thr_copy_O.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
|
|
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
|
|
// sO has the same size as sQ, so we don't need to sync here.
|
|
if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }
|
|
|
|
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
|
|
|
|
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
|
|
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
|
|
make_shape(binfo.actual_seqlen_q, params.h, params.d),
|
|
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
|
|
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
|
|
Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
|
|
|
|
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
|
|
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
|
|
Tensor tOsO = gmem_thr_copy_O.partition_S(sO); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
|
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
|
|
|
|
__syncthreads();
|
|
|
|
Tensor tOrO = make_tensor<Element>(shape(tOgO));
|
|
cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
|
|
|
|
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
Tensor taccOcO = thr_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
|
|
static_assert(decltype(size<0>(taccOcO))::value == 4);
|
|
// Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
|
|
Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
|
|
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
|
|
if (get<1>(taccOcO_row(0)) == 0) {
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size(lse); ++mi) {
|
|
const int row = get<0>(taccOcO_row(mi));
|
|
if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
|
|
}
|
|
}
|
|
|
|
// Construct identity layout for sO
|
|
Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tOcO = gmem_thr_copy_O.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
|
|
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
|
|
}
|
|
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Split, bool Append_KV, typename Params>
|
|
inline __device__ void compute_attn_1rowblock_splitkv(const Params ¶ms, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {
|
|
|
|
using Element = typename Kernel_traits::Element;
|
|
using ElementAccum = typename Kernel_traits::ElementAccum;
|
|
using index_t = typename Kernel_traits::index_t;
|
|
|
|
// Shared memory.
|
|
extern __shared__ char smem_[];
|
|
|
|
// The thread index.
|
|
const int tidx = threadIdx.x;
|
|
|
|
constexpr int kBlockM = Kernel_traits::kBlockM;
|
|
constexpr int kBlockN = Kernel_traits::kBlockN;
|
|
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
|
constexpr int kNWarps = Kernel_traits::kNWarps;
|
|
|
|
using GmemTiledCopyO = std::conditional_t<
|
|
!Split,
|
|
typename Kernel_traits::GmemTiledCopyO,
|
|
typename Kernel_traits::GmemTiledCopyOaccum
|
|
>;
|
|
using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
|
|
|
|
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
|
|
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
|
|
// if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
|
|
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
|
|
|
|
const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
|
|
const int n_block_min = !Is_local
|
|
? n_split_idx * n_blocks_per_split
|
|
: std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
|
|
int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
|
|
if (Is_causal || Is_local) {
|
|
n_block_max = std::min(n_block_max,
|
|
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
|
|
}
|
|
if (n_block_min >= n_block_max) { // This also covers the case where n_block_max <= 0
|
|
// We exit early and write 0 to gOaccum and -inf to gLSEaccum.
|
|
// Otherwise we might read OOB elements from gK and gV,
|
|
// or get wrong results when we combine gOaccum from different blocks.
|
|
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
|
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
|
const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
|
|
+ m_block * kBlockM) * params.d_rounded;
|
|
const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
|
|
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
|
|
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
|
|
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
|
|
|
GmemTiledCopyO gmem_tiled_copy_Oaccum;
|
|
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
|
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
|
|
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
|
|
clear(tOrOaccum);
|
|
// Construct identity layout for sO
|
|
Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
|
|
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
|
|
}
|
|
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(tOgOaccum); ++m) {
|
|
const int row = get<0>(tOcO(0, m, 0));
|
|
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We iterate over the blocks in reverse order. This is because the last block is the only one
|
|
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
|
|
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
|
|
|
|
// We move K and V to the last block.
|
|
const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
|
|
const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
|
|
const int block_table_idx = block_table == nullptr ? 0 : (n_block_max - 1) * kBlockN / params.page_block_size;
|
|
const int block_table_offset = block_table == nullptr ? 0 : (n_block_max - 1) * kBlockN - block_table_idx * params.page_block_size;
|
|
const index_t row_offset_k = block_table == nullptr
|
|
? binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
|
|
+ (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride
|
|
: block_table[block_table_idx] * params.k_batch_stride + block_table_offset * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
|
|
const index_t row_offset_v = block_table == nullptr
|
|
? binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
|
|
+ (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
|
|
: block_table[block_table_idx] * params.v_batch_stride + block_table_offset * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
|
|
|
|
Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr) + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
|
|
make_shape(binfo.actual_seqlen_q, params.h, params.d),
|
|
make_stride(params.q_row_stride, params.q_head_stride, _1{}));
|
|
Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
|
|
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.k_row_stride, _1{}));
|
|
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
|
|
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.v_row_stride, _1{}));
|
|
|
|
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
|
|
typename Kernel_traits::SmemLayoutQ{});
|
|
Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
|
|
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
|
|
Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
|
|
Tensor sVtNoSwizzle = make_tensor(sV.data().get(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
|
|
|
|
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
|
|
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
|
|
|
|
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
|
|
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
|
|
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
|
|
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
|
|
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
|
|
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
|
|
|
|
typename Kernel_traits::TiledMma tiled_mma;
|
|
auto thr_mma = tiled_mma.get_thread_slice(tidx);
|
|
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
|
|
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
|
|
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
|
|
|
|
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_M, MMA_K
|
|
|
|
//
|
|
// Copy Atom retiling
|
|
//
|
|
|
|
auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
|
|
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
|
|
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
|
|
|
|
auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
|
|
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
|
|
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
|
|
|
|
auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
|
|
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
|
|
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
|
|
|
|
// PREDICATES
|
|
//
|
|
|
|
// // Allocate predicate tensors for m and n
|
|
// Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
|
|
// Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});
|
|
|
|
// Construct identity layout for sQ and sK
|
|
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
|
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
|
|
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
|
|
|
|
// Allocate predicate tensors for k
|
|
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
|
|
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
|
|
|
|
// Set predicates for k bounds
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
|
|
}
|
|
|
|
// Prologue
|
|
|
|
// Copy from Knew to K, optionally apply rotary embedding.
|
|
typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
|
|
auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
|
|
typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
|
|
auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
|
|
if constexpr (Append_KV) {
|
|
// Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
|
|
// gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
|
|
// We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
|
|
const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN) * (params.rotary_dim / 2);
|
|
Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
|
|
make_stride(params.rotary_dim / 2, _1{}));
|
|
Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
|
|
make_stride(params.rotary_dim / 2, _1{}));
|
|
Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.rotary_dim / 2, _1{}));
|
|
Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.rotary_dim / 2, _1{}));
|
|
Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
|
|
Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
|
|
Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
|
|
Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
|
|
// if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
|
|
// if (cute::thread(8, 0)) { print_tensor(gCos); }
|
|
// if (cute::thread(0, 0)) { print_tensor(tRgCos); }
|
|
|
|
const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
|
|
+ ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
|
|
const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
|
|
+ ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
|
|
// Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
|
|
// e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
|
|
// This maps to accessing the first 64 rows of knew_ptr.
|
|
Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
|
|
+ row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.knew_row_stride, _1{}));
|
|
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
|
|
Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
|
|
+ row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
|
|
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
|
make_stride(params.vnew_row_stride, _1{}));
|
|
Tensor tKgKnew = gmem_thr_copy_QKV.partition_S(gKnew); // (KCPY, KCPY_N, KCPY_K)
|
|
Tensor tVgVnew = gmem_thr_copy_QKV.partition_S(gVnew); // (VCPY, VCPY_N, VCPY_K)
|
|
|
|
const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
|
|
auto tKgK_data = tKgK.data();
|
|
auto tVgV_data = tVgV.data();
|
|
for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
|
|
flash::copy_w_min_idx<Is_even_K>(
|
|
tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
|
|
);
|
|
tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
|
|
if (params.rotary_dim == 0) {
|
|
flash::copy_w_min_idx<Is_even_K>(
|
|
tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
|
|
);
|
|
} else {
|
|
if (params.is_rotary_interleaved) {
|
|
// Don't clear OOB_K because we're writing to global memory
|
|
flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
|
|
tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
|
|
binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
|
|
);
|
|
tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
|
|
tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
|
|
} else {
|
|
// Don't clear OOB_K because we're writing to global memory
|
|
flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
|
|
tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
|
|
binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
|
|
);
|
|
tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
|
|
tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));
|
|
|
|
}
|
|
}
|
|
tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
|
|
if (block_table == nullptr) {
|
|
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
|
|
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
|
|
} else {
|
|
if (n_block > n_block_copy_min) {
|
|
const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
|
|
const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
|
|
const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
|
|
const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
|
|
const int table_diff = block_table[block_table_idx_next] - block_table[block_table_idx_cur];
|
|
const int offset_diff = block_table_offset_next - block_table_offset_cur;
|
|
tVgV.data() = tVgV.data() + table_diff * params.v_batch_stride + offset_diff * params.v_row_stride;
|
|
tKgK.data() = tKgK.data() + table_diff * params.k_batch_stride + offset_diff * params.k_row_stride;
|
|
}
|
|
}
|
|
}
|
|
// Need this before we can read in K again, so that we'll see the updated K values.
|
|
__syncthreads();
|
|
tKgK.data() = tKgK_data;
|
|
tVgV.data() = tVgV_data;
|
|
}
|
|
|
|
// Read Q from gmem to smem, optionally apply rotary embedding.
|
|
if (!Append_KV || params.rotary_dim == 0) {
|
|
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
|
|
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
|
|
binfo.actual_seqlen_q - m_block * kBlockM);
|
|
} else {
|
|
const index_t row_offset_cossin = (binfo.seqlen_k_cache + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
|
|
// If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
|
|
// We do this by setting the row stride of gCos / gSin to 0.
|
|
Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
|
|
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
|
|
Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
|
|
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
|
|
Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
|
|
Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
|
|
Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
|
|
Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
|
|
Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
|
|
Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
|
|
if (params.is_rotary_interleaved) {
|
|
flash::copy_rotary_interleaved<Is_even_K>(
|
|
tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
|
|
0, params.d, params.rotary_dim
|
|
);
|
|
} else {
|
|
flash::copy_rotary_contiguous<Is_even_K>(
|
|
tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
|
|
0, params.d, params.rotary_dim
|
|
);
|
|
}
|
|
}
|
|
|
|
int n_block = n_block_max - 1;
|
|
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
|
|
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
|
|
binfo.actual_seqlen_k - n_block * kBlockN);
|
|
cute::cp_async_fence();
|
|
|
|
// flash::cp_async_wait<0>();
|
|
// __syncthreads();
|
|
// if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
|
|
// __syncthreads();
|
|
|
|
clear(acc_o);
|
|
|
|
flash::Softmax<2 * size<1>(acc_o)> softmax;
|
|
|
|
const float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
|
|
flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
|
|
|
|
// For performance reason, we separate out two kinds of iterations:
|
|
// those that need masking on S, and those that don't.
|
|
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
|
|
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
|
|
// We will have at least 1 "masking" iteration.
|
|
|
|
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
|
|
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
|
|
constexpr int n_masking_steps = (!Is_causal && !Is_local)
|
|
? 1
|
|
: ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
|
|
#pragma unroll
|
|
for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
|
|
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
|
|
clear(acc_s);
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
|
|
// Advance gV
|
|
if (masking_step > 0) {
|
|
if (block_table == nullptr) {
|
|
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
|
|
} else {
|
|
const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
|
|
const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
|
|
const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
|
|
const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
|
|
tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
|
|
}
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
|
|
} else {
|
|
// Clear the smem tiles to account for predicated off loads
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
|
|
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
|
|
);
|
|
}
|
|
cute::cp_async_fence();
|
|
|
|
flash::gemm(
|
|
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
|
|
smem_thr_copy_Q, smem_thr_copy_K
|
|
);
|
|
// if (cute::thread0()) { print(acc_s); }
|
|
if constexpr (Is_softcap){
|
|
apply_softcap(acc_s, params.softcap);
|
|
}
|
|
|
|
|
|
mask.template apply_mask<Is_causal, Is_even_MN>(
|
|
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
|
|
);
|
|
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
// if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
|
|
// __syncthreads();
|
|
|
|
if (n_block > n_block_min) {
|
|
// Advance gK
|
|
if (block_table == nullptr) {
|
|
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
|
|
} else {
|
|
const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
|
|
const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
|
|
const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
|
|
const int block_table_offset_next =(n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
|
|
tKgK.data() = tKgK.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.k_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.k_row_stride;
|
|
}
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
|
|
// This cp_async_fence needs to be in the if block, otherwise the synchronization
|
|
// isn't right and we get race conditions.
|
|
cute::cp_async_fence();
|
|
}
|
|
|
|
// We have key_padding_mask so we'll need to Check_inf
|
|
masking_step == 0
|
|
? softmax.template softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2)
|
|
: softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2);
|
|
// if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
|
|
|
|
// Convert acc_s from fp32 to fp16/bf16
|
|
Tensor rP = flash::convert_type<Element>(acc_s);
|
|
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
|
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
|
|
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
|
|
|
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
|
|
|
|
// This check is at the end of the loop since we always have at least 1 iteration
|
|
if (n_masking_steps > 1 && n_block <= n_block_min) {
|
|
--n_block;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// These are the iterations where we don't need masking on S
|
|
for (; n_block >= n_block_min; --n_block) {
|
|
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
|
|
clear(acc_s);
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
// Advance gV
|
|
if (block_table == nullptr) {
|
|
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
|
|
} else {
|
|
const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
|
|
const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
|
|
const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
|
|
const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
|
|
tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
|
|
}
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
|
|
cute::cp_async_fence();
|
|
|
|
flash::gemm(
|
|
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
|
|
smem_thr_copy_Q, smem_thr_copy_K
|
|
);
|
|
if constexpr (Is_softcap){
|
|
apply_softcap(acc_s, params.softcap);
|
|
}
|
|
|
|
flash::cp_async_wait<0>();
|
|
__syncthreads();
|
|
if (n_block > n_block_min) {
|
|
// Advance gK
|
|
if (block_table == nullptr) {
|
|
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
|
|
} else {
|
|
const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
|
|
const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
|
|
const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
|
|
const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
|
|
tKgK.data() = tKgK.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.k_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.k_row_stride;
|
|
}
|
|
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
|
|
// This cp_async_fence needs to be in the if block, otherwise the synchronization
|
|
// isn't right and we get race conditions.
|
|
cute::cp_async_fence();
|
|
}
|
|
|
|
mask.template apply_mask</*Causal_mask=*/false>(
|
|
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
|
|
);
|
|
softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
|
|
|
|
Tensor rP = flash::convert_type<Element>(acc_s);
|
|
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
|
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
|
|
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
|
|
|
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
|
|
}
|
|
|
|
// Epilogue
|
|
|
|
Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(acc_o, params.scale_softmax);
|
|
// if (cute::thread0()) { print(lse); }
|
|
|
|
Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
|
|
// Partition sO to match the accumulator partitioning
|
|
using SmemTiledCopyO = std::conditional_t<
|
|
!Split,
|
|
typename Kernel_traits::SmemCopyAtomO,
|
|
typename Kernel_traits::SmemCopyAtomOaccum
|
|
>;
|
|
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
|
|
auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
|
Tensor rO = flash::convert_type<ElementO>(acc_o);
|
|
Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
|
|
Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
|
|
|
// sOaccum is larger than sQ, so we need to syncthreads here
|
|
// TODO: allocate enough smem for sOaccum
|
|
if constexpr (Split) { __syncthreads(); }
|
|
|
|
cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);
|
|
|
|
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
|
|
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
|
const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
|
|
+ m_block * kBlockM) * params.d_rounded;
|
|
const index_t row_offset_lseaccum = (Split || !params.unpadded_lse ?
|
|
((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q : bidh * params.total_q + binfo.q_offset(params.seqlen_q, 1, bidb)
|
|
) + m_block * kBlockM;
|
|
|
|
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
|
|
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
|
|
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
|
// if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
|
|
|
|
GmemTiledCopyO gmem_tiled_copy_Oaccum;
|
|
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
|
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
|
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
|
|
|
|
__syncthreads();
|
|
|
|
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
|
|
cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);
|
|
|
|
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
Tensor taccOcO = thr_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
|
|
static_assert(decltype(size<0>(taccOcO))::value == 4);
|
|
// Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
|
|
Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
|
|
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
|
|
if (get<1>(taccOcO_row(0)) == 0) {
|
|
#pragma unroll
|
|
for (int mi = 0; mi < size(lse); ++mi) {
|
|
const int row = get<0>(taccOcO_row(mi));
|
|
if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
|
|
}
|
|
}
|
|
|
|
// Construct identity layout for sO
|
|
Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
|
|
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
|
|
}
|
|
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
|
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
|
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
|
|
);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Return_softmax, typename Params>
|
|
inline __device__ void compute_attn(const Params ¶ms) {
|
|
const int m_block = blockIdx.x;
|
|
// The block index for the batch.
|
|
const int bidb = blockIdx.y;
|
|
// The block index for the head.
|
|
const int bidh = blockIdx.z;
|
|
|
|
// We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
|
|
// them to have the same number of threads or have to traverse the attention matrix
|
|
// in the same order.
|
|
// In the Philox RNG, we use the offset to store the batch, head, and the lane id
|
|
// (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
|
|
// the attention matrix. This way, as long as we have the batch, head, and the location of
|
|
// the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.
|
|
|
|
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, Return_softmax>(params, bidb, bidh, m_block);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Split, bool Append_KV, typename Params>
|
|
inline __device__ void compute_attn_splitkv(const Params ¶ms) {
|
|
const int m_block = blockIdx.x;
|
|
// The block index for the batch.
|
|
const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
|
|
// The block index for the head.
|
|
const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
|
|
const int n_split_idx = Split ? blockIdx.y : 0;
|
|
const int num_n_splits = Split ? gridDim.y : 1;
|
|
flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
|
|
inline __device__ void combine_attn_seqk_parallel(const Params ¶ms) {
|
|
using Element = typename Kernel_traits::Element;
|
|
using ElementAccum = typename Kernel_traits::ElementAccum;
|
|
using index_t = typename Kernel_traits::index_t;
|
|
constexpr int kMaxSplits = 1 << Log_max_splits;
|
|
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
|
constexpr int kNThreads = Kernel_traits::kNThreads;
|
|
|
|
static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
|
|
static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
|
|
static_assert(kNThreads == 128, "We assume that each block has 128 threads");
|
|
|
|
// Shared memory.
|
|
// kBlockM + 1 instead of kBlockM to reduce bank conflicts.
|
|
__shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];
|
|
|
|
// The thread and block index.
|
|
const int tidx = threadIdx.x;
|
|
const int bidx = blockIdx.x;
|
|
|
|
const index_t lse_size = params.b * params.h * params.seqlen_q;
|
|
|
|
const index_t row_offset_lse = bidx * kBlockM;
|
|
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
|
|
Shape<Int<kMaxSplits>, Int<kBlockM>>{},
|
|
make_stride(lse_size, _1{}));
|
|
|
|
// LSE format is different depending on params.unpadded_lse and params.seqlenq_ngroups_swapped, see comment in get_lse_tile.
|
|
// This tensor's layout maps row_offset_lse to {bidb, bidh, q_offset}.
|
|
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
|
|
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
|
|
|
// This layout maps row_offset_lse to {bidh, q_offset, bidb} or {bidh, bidb, q_offset}.
|
|
Layout flat_layout = make_layout(lse_size);
|
|
Layout orig_layout = make_layout(make_shape(params.seqlen_q, params.h, params.b));
|
|
auto transposed_stride = params.seqlenq_ngroups_swapped ? make_stride(params.b, params.seqlen_q * params.b, 1) : make_stride(1, params.seqlen_q * params.b, params.seqlen_q);
|
|
Layout remapped_layout = make_layout(make_shape(params.seqlen_q, params.h, params.b), transposed_stride);
|
|
Layout final_layout = cute::composition(remapped_layout, cute::composition(orig_layout, flat_layout));
|
|
|
|
Tensor gLSE_unpadded = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr)), final_layout);
|
|
|
|
constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
|
|
|
|
// Read the LSE values from gmem and store them in shared memory, then transpose them.
|
|
constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
|
|
#pragma unroll
|
|
for (int l = 0; l < kNLsePerThread; ++l) {
|
|
const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
|
|
const int col = tidx % kBlockM;
|
|
ElementAccum lse = (row < params.num_splits && col < lse_size - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
|
|
if (row < kMaxSplits) { sLSE[row][col] = lse; }
|
|
// if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
|
|
}
|
|
// if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
|
|
__syncthreads();
|
|
Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
|
|
constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
|
|
// To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
|
|
// each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
|
|
// kBlockM rows, so each time we load we can load 128 / kBlockM rows).
|
|
// constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
|
|
// static_assert(kThreadsPerSplit <= 32);
|
|
static_assert(kRowsPerLoadTranspose <= 32);
|
|
static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
|
|
#pragma unroll
|
|
for (int l = 0; l < kNLsePerThread; ++l) {
|
|
const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
|
|
const int col = tidx / kRowsPerLoadTranspose;
|
|
lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
|
|
// if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
|
|
}
|
|
|
|
// Compute the logsumexp of the LSE along the split dimension.
|
|
ElementAccum lse_max = lse_accum(0);
|
|
#pragma unroll
|
|
for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
|
|
MaxOp<float> max_op;
|
|
lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
|
|
lse_max = lse_max == -INFINITY ? 0.0f : lse_max; // In case all local LSEs are -inf
|
|
float lse_sum = expf(lse_accum(0) - lse_max);
|
|
#pragma unroll
|
|
for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
|
|
SumOp<float> sum_op;
|
|
lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
|
|
// For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
|
|
// lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
|
|
ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
|
|
// if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
|
|
if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) {
|
|
if (params.unpadded_lse) {
|
|
const index_t lse_offset = row_offset_lse + tidx / kRowsPerLoadTranspose;
|
|
if (lse_offset < lse_size) {
|
|
gLSE_unpadded(lse_offset) = lse_logsum;
|
|
}
|
|
} else {
|
|
gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum;
|
|
}
|
|
}
|
|
// Store the scales exp(lse - lse_logsum) in shared memory.
|
|
#pragma unroll
|
|
for (int l = 0; l < kNLsePerThread; ++l) {
|
|
const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
|
|
const int col = tidx / kRowsPerLoadTranspose;
|
|
if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
|
|
}
|
|
__syncthreads();
|
|
|
|
const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
|
|
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
|
|
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
|
Stride<Int<kHeadDim>, _1>{});
|
|
constexpr int kBlockN = kNThreads / kBlockM;
|
|
using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
|
|
using GmemTiledCopyOaccum = decltype(
|
|
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
|
|
GmemLayoutAtomOaccum{},
|
|
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
|
|
GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
|
|
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
|
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
|
|
Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
|
|
Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
|
|
clear(tOrO);
|
|
|
|
// Predicates
|
|
Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
|
|
// Repeat the partitioning with identity layouts
|
|
Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
|
|
Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
|
|
if (!Is_even_K) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
|
|
}
|
|
// Load Oaccum in then scale and accumulate to O
|
|
for (int split = 0; split < params.num_splits; ++split) {
|
|
flash::copy</*Is_even_MN=*/false, Is_even_K>(
|
|
gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
|
|
);
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(tOrOaccum); ++m) {
|
|
int row = get<0>(tOcOaccum(0, m, 0));
|
|
ElementAccum lse_scale = sLSE[split][row];
|
|
#pragma unroll
|
|
for (int k = 0; k < size<2>(tOrOaccum); ++k) {
|
|
#pragma unroll
|
|
for (int i = 0; i < size<0>(tOrOaccum); ++i) {
|
|
tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
|
|
}
|
|
}
|
|
// if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
|
|
}
|
|
tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
|
|
}
|
|
// if (cute::thread0()) { print_tensor(tOrO); }
|
|
|
|
Tensor rO = flash::convert_type<Element>(tOrO);
|
|
// Write to gO
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(rO); ++m) {
|
|
const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
|
|
if (idx < params.b * params.h * params.seqlen_q) {
|
|
const int batch_idx = idx / (params.h * params.seqlen_q);
|
|
const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
|
|
// The index to the rows of Q
|
|
const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
|
|
auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
|
|
+ head_idx * params.o_head_stride + row * params.o_row_stride;
|
|
#pragma unroll
|
|
for (int k = 0; k < size<2>(rO); ++k) {
|
|
if (Is_even_K || tOpOaccum(k)) {
|
|
const int col = get<1>(tOcOaccum(0, m, k));
|
|
Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
|
|
Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
|
|
// TODO: Should check if this is using vectorized store, but it seems pretty fast
|
|
copy(rO(_, m, k), gO);
|
|
// if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
|
|
// reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace flash
|