Make the metal sdpa tests deterministic. (#2750)
This commit is contained in:
parent
da02b59516
commit
ab9019425a
|
@ -26,6 +26,7 @@ candle-metal-kernels = { workspace = true, optional = true }
|
|||
anyhow = { workspace = true }
|
||||
clap = { workspace = true }
|
||||
rand = { workspace = true }
|
||||
rand_distr = { workspace = true }
|
||||
criterion = { workspace = true }
|
||||
|
||||
[features]
|
||||
|
@ -37,4 +38,4 @@ metal = ["candle/metal", "dep:candle-metal-kernels", "dep:metal"]
|
|||
|
||||
[[bench]]
|
||||
name = "bench_main"
|
||||
harness = false
|
||||
harness = false
|
||||
|
|
|
@ -1,86 +1,84 @@
|
|||
#[cfg(feature = "metal")]
|
||||
mod metal_sdpa_tests {
|
||||
#[test]
|
||||
fn sdpa_full() -> candle::Result<()> {
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle::{DType, Device, Result, Shape, Tensor};
|
||||
use rand::SeedableRng;
|
||||
use rand_distr::Distribution;
|
||||
use std::ops::{Div, Mul};
|
||||
|
||||
fn randn<S: Into<Shape>>(
|
||||
rng: &mut rand::rngs::StdRng,
|
||||
shape: S,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let elem_count = shape.elem_count();
|
||||
let normal = rand_distr::Normal::new(0.0, 1.0).unwrap();
|
||||
let vs: Vec<f32> = (0..elem_count).map(|_| normal.sample(rng)).collect();
|
||||
Tensor::from_vec(vs, &shape, dev)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sdpa_full() -> Result<()> {
|
||||
// Force seqlen = 100
|
||||
const BS: usize = 4;
|
||||
const R: usize = 4;
|
||||
const L: usize = 4;
|
||||
const DK: usize = 64;
|
||||
const H: usize = 3;
|
||||
|
||||
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
||||
|
||||
let device = Device::new_metal(0)?;
|
||||
|
||||
let q = Tensor::randn(0f32, 1f32, (BS, H, R, DK), &device)?;
|
||||
let k = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
let v = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
|
||||
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
||||
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let ground_truth = {
|
||||
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
||||
let att = candle_nn::ops::softmax_last_dim(&att.to_dtype(DType::F32)?)?
|
||||
.to_dtype(q.dtype())?;
|
||||
att.matmul(&v.clone())?
|
||||
};
|
||||
|
||||
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, 1.)?;
|
||||
|
||||
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
||||
|
||||
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
||||
.sum_all()?
|
||||
.to_scalar()?;
|
||||
|
||||
assert!(error <= 0.0005, "{}", error);
|
||||
|
||||
assert!(error <= 0.0004, "{}", error);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sdpa_vector() -> candle::Result<()> {
|
||||
use candle::{DType, Device, Tensor};
|
||||
|
||||
fn sdpa_vector() -> Result<()> {
|
||||
// Allow vectorized, seqlen = 1
|
||||
const BS: usize = 4;
|
||||
const R: usize = 1;
|
||||
const L: usize = 1;
|
||||
const DK: usize = 64;
|
||||
const H: usize = 3;
|
||||
|
||||
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
||||
|
||||
let device = Device::new_metal(0)?;
|
||||
|
||||
let q = Tensor::randn(0f32, 1f32, (BS, H, R, DK), &device)?;
|
||||
let k = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
let v = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(4242);
|
||||
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
||||
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let ground_truth = {
|
||||
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
||||
let att = candle_nn::ops::softmax_last_dim(&att.to_dtype(DType::F32)?)?
|
||||
.to_dtype(q.dtype())?;
|
||||
att.matmul(&v.clone())?
|
||||
};
|
||||
|
||||
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, 1.)?;
|
||||
|
||||
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
||||
|
||||
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
||||
.sum_all()?
|
||||
.to_scalar()?;
|
||||
|
||||
assert!(error <= 0.0001, "{}", error);
|
||||
|
||||
assert!(error <= 0.000, "{}", error);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sdpa_full_softcapping() -> candle::Result<()> {
|
||||
use candle::{DType, Device, Tensor};
|
||||
use std::ops::{Div, Mul};
|
||||
|
||||
fn sdpa_full_softcapping() -> Result<()> {
|
||||
// Allow vectorized, seqlen = 1
|
||||
const BS: usize = 4;
|
||||
const R: usize = 4;
|
||||
|
@ -88,14 +86,13 @@ mod metal_sdpa_tests {
|
|||
const DK: usize = 64;
|
||||
const H: usize = 3;
|
||||
const SOFTCAP: f64 = 50.;
|
||||
|
||||
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
||||
|
||||
let device = Device::new_metal(0)?;
|
||||
|
||||
let q = Tensor::randn(0f32, 1f32, (BS, H, R, DK), &device)?;
|
||||
let k = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
let v = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(424242);
|
||||
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
||||
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let ground_truth = {
|
||||
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
||||
let att = candle_nn::ops::softmax_last_dim(
|
||||
|
@ -107,25 +104,17 @@ mod metal_sdpa_tests {
|
|||
.to_dtype(q.dtype())?;
|
||||
att.matmul(&v.clone())?
|
||||
};
|
||||
|
||||
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, SOFTCAP as f32)?;
|
||||
|
||||
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
||||
|
||||
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
||||
.sum_all()?
|
||||
.to_scalar()?;
|
||||
|
||||
assert!(error <= 0.0005, "{}", error);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sdpa_vector_softcapping() -> candle::Result<()> {
|
||||
use candle::{DType, Device, Tensor};
|
||||
use std::ops::{Div, Mul};
|
||||
|
||||
fn sdpa_vector_softcapping() -> Result<()> {
|
||||
// Allow vectorized, seqlen = 1
|
||||
const BS: usize = 4;
|
||||
const R: usize = 1;
|
||||
|
@ -133,14 +122,13 @@ mod metal_sdpa_tests {
|
|||
const DK: usize = 64;
|
||||
const H: usize = 3;
|
||||
const SOFTCAP: f64 = 50.;
|
||||
|
||||
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
||||
|
||||
let device = Device::new_metal(0)?;
|
||||
|
||||
let q = Tensor::randn(0f32, 1f32, (BS, H, R, DK), &device)?;
|
||||
let k = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
let v = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(42424242);
|
||||
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
||||
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let ground_truth = {
|
||||
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
||||
let att = candle_nn::ops::softmax_last_dim(
|
||||
|
@ -152,55 +140,42 @@ mod metal_sdpa_tests {
|
|||
.to_dtype(q.dtype())?;
|
||||
att.matmul(&v.clone())?
|
||||
};
|
||||
|
||||
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, SOFTCAP as f32)?;
|
||||
|
||||
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
||||
|
||||
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
||||
.sum_all()?
|
||||
.to_scalar()?;
|
||||
|
||||
assert!(error <= 0.0001, "{}", error);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sdpa_vector_cross() -> candle::Result<()> {
|
||||
use candle::{DType, Device, Tensor};
|
||||
|
||||
fn sdpa_vector_cross() -> Result<()> {
|
||||
// Allow vectorized, seqlen = 1. Simulat cross attention case where R != L, R = 1
|
||||
const BS: usize = 4;
|
||||
const R: usize = 1;
|
||||
const L: usize = 24;
|
||||
const DK: usize = 64;
|
||||
const H: usize = 3;
|
||||
|
||||
let scale: f64 = f64::from(DK as u32).sqrt().recip();
|
||||
|
||||
let device = Device::new_metal(0)?;
|
||||
|
||||
let q = Tensor::randn(0f32, 1f32, (BS, H, R, DK), &device)?;
|
||||
let k = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
let v = Tensor::randn(0f32, 1f32, (BS, H, L, DK), &device)?;
|
||||
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(4242424242);
|
||||
let q = randn(&mut rng, (BS, H, R, DK), &device)?;
|
||||
let k = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let v = randn(&mut rng, (BS, H, L, DK), &device)?;
|
||||
let ground_truth = {
|
||||
let att = (q.clone() * scale)?.matmul(&k.clone().t()?)?;
|
||||
let att = candle_nn::ops::softmax_last_dim(&att.to_dtype(DType::F32)?)?
|
||||
.to_dtype(q.dtype())?;
|
||||
att.matmul(&v.clone())?
|
||||
};
|
||||
|
||||
let sdpa_output = candle_nn::ops::sdpa(&q, &k, &v, scale as f32, 1.)?;
|
||||
|
||||
assert_eq!(ground_truth.shape(), sdpa_output.shape());
|
||||
|
||||
let error: f32 = ((&ground_truth - &sdpa_output)?.abs()? / &ground_truth.abs()?)?
|
||||
.sum_all()?
|
||||
.to_scalar()?;
|
||||
|
||||
assert!(error <= 0.0013, "{}", error);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue