Gumbel-Softmax sampling. (#2894)

* Gumbel-Softmax sampling.

* Add a sampling test.

* Share the gumbel-softmax bits.
This commit is contained in:
Laurent Mazare 2025-04-14 15:42:42 +02:00 committed by GitHub
parent a52b76ae82
commit 2653002f29
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 54 additions and 1 deletions

View File

@ -46,7 +46,7 @@ impl TextGeneration {
Sampling::ArgMax
} else {
match (top_k, top_p) {
(None, None) => Sampling::All { temperature },
(None, None) => Sampling::GumbelSoftmax { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },

View File

@ -31,6 +31,7 @@ pub mod ops;
pub mod optim;
pub mod rnn;
pub mod rotary_emb;
pub mod sampling;
pub mod sequential;
pub mod var_builder;
pub mod var_map;

20
candle-nn/src/sampling.rs Normal file
View File

@ -0,0 +1,20 @@
use candle::{Result, Tensor};
/// Sample according to the Gumbel-Softmax distribution.
pub fn gumbel_softmax<D: candle::shape::Dim>(
logits: &Tensor,
temperature: f64,
dim: D,
) -> Result<Tensor> {
if temperature <= 0.0 {
logits.argmax(dim)
} else if temperature == 1.0 {
let minus_g = logits.rand_like(1e-7, 0.999)?.log()?.neg()?.log()?;
let sampled = (logits - minus_g)?.argmax(dim)?;
Ok(sampled)
} else {
let minus_g = logits.rand_like(1e-7, 0.999)?.log()?.neg()?.log()?;
let sampled = (logits + minus_g * (-temperature))?.argmax(dim)?;
Ok(sampled)
}
}

View File

@ -13,6 +13,8 @@ pub enum Sampling {
TopK { k: usize, temperature: f64 },
TopP { p: f64, temperature: f64 },
TopKThenTopP { k: usize, p: f64, temperature: f64 },
// Note that the rng is not used for the Gumbel-Softmax sampling.
GumbelSoftmax { temperature: f64 },
}
pub struct LogitsProcessor {
@ -49,6 +51,11 @@ impl LogitsProcessor {
Ok(next_token)
}
fn sample_gumbel_softmax(&mut self, logits: &Tensor, temperature: f64) -> Result<u32> {
let sampled = candle_nn::sampling::gumbel_softmax(logits, temperature, candle::D::Minus1)?;
sampled.to_vec0::<u32>()
}
fn sample_multinomial(&mut self, prs: &Vec<f32>) -> Result<u32> {
let distr = rand::distr::weighted::WeightedIndex::new(prs).map_err(Error::wrap)?;
let next_token = distr.sample(&mut self.rng) as u32;
@ -127,6 +134,9 @@ impl LogitsProcessor {
let next_token = match &self.sampling {
Sampling::ArgMax => self.sample_argmax(logits)?,
Sampling::GumbelSoftmax { temperature } => {
self.sample_gumbel_softmax(&logits, *temperature)?
}
Sampling::All { temperature } => {
let prs = prs(*temperature)?;
self.sample_multinomial(&prs)?

View File

@ -54,3 +54,25 @@ fn sample_with_top_k() -> Result<()> {
assert_eq!(token, 2);
Ok(())
}
#[test]
fn sample_gumbel() -> Result<()> {
let mut logits_process = LogitsProcessor::from_sampling(
42,
candle_transformers::generation::Sampling::GumbelSoftmax { temperature: 1.0 },
);
let logits = Tensor::new(&[-1.0, 0.0, 0.2, 1.0], &Device::Cpu)?;
let sm = candle_nn::ops::softmax(&logits, 0)?.to_vec1::<f64>()?;
let mut counts = vec![0f64; 4];
let samples = 100000;
for _ in 0..samples {
let token = logits_process.sample(&logits)?;
counts[token as usize] += 1f64 / samples as f64;
}
for i in 0..4 {
if (counts[i] - sm[i]).abs() > 0.05 {
panic!("pr mismatch {counts:?} {sm:?}");
}
}
Ok(())
}