181 lines
6.3 KiB
Python
181 lines
6.3 KiB
Python
# Copyright (c) Alibaba Cloud.
|
||
#
|
||
# This source code is licensed under the license found in the
|
||
# LICENSE file in the root directory of this source tree.
|
||
|
||
"""A simple web interactive chat demo based on gradio."""
|
||
|
||
from argparse import ArgumentParser
|
||
from threading import Thread
|
||
|
||
import gradio as gr
|
||
import torch
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
||
|
||
DEFAULT_CKPT_PATH = 'Qwen/Qwen2-7B-Instruct'
|
||
|
||
|
||
def _get_args():
|
||
parser = ArgumentParser()
|
||
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
|
||
help="Checkpoint name or path, default to %(default)r")
|
||
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
|
||
|
||
parser.add_argument("--share", action="store_true", default=False,
|
||
help="Create a publicly shareable link for the interface.")
|
||
parser.add_argument("--inbrowser", action="store_true", default=False,
|
||
help="Automatically launch the interface in a new tab on the default browser.")
|
||
parser.add_argument("--server-port", type=int, default=8000,
|
||
help="Demo server port.")
|
||
parser.add_argument("--server-name", type=str, default="127.0.0.1",
|
||
help="Demo server name.")
|
||
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
|
||
def _load_model_tokenizer(args):
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
args.checkpoint_path, resume_download=True,
|
||
)
|
||
|
||
if args.cpu_only:
|
||
device_map = "cpu"
|
||
else:
|
||
device_map = "auto"
|
||
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
args.checkpoint_path,
|
||
torch_dtype="auto",
|
||
device_map=device_map,
|
||
resume_download=True,
|
||
).eval()
|
||
model.generation_config.max_new_tokens = 2048 # For chat.
|
||
|
||
return model, tokenizer
|
||
|
||
|
||
def _chat_stream(model, tokenizer, query, history):
|
||
conversation = [
|
||
{'role': 'system', 'content': 'You are a helpful assistant.'},
|
||
]
|
||
for query_h, response_h in history:
|
||
conversation.append({'role': 'user', 'content': query_h})
|
||
conversation.append({'role': 'assistant', 'content': response_h})
|
||
conversation.append({'role': 'user', 'content': query})
|
||
inputs = tokenizer.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
return_tensors='pt',
|
||
)
|
||
inputs = inputs.to(model.device)
|
||
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True)
|
||
generation_kwargs = dict(
|
||
input_ids=inputs,
|
||
streamer=streamer,
|
||
)
|
||
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
||
thread.start()
|
||
|
||
for new_text in streamer:
|
||
yield new_text
|
||
|
||
|
||
def _gc():
|
||
import gc
|
||
gc.collect()
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
|
||
|
||
def _launch_demo(args, model, tokenizer):
|
||
|
||
def predict(_query, _chatbot, _task_history):
|
||
print(f"User: {_query}")
|
||
_chatbot.append((_query, ""))
|
||
full_response = ""
|
||
response = ""
|
||
for new_text in _chat_stream(model, tokenizer, _query, history=_task_history):
|
||
response += new_text
|
||
_chatbot[-1] = (_query, response)
|
||
|
||
yield _chatbot
|
||
full_response = response
|
||
|
||
print(f"History: {_task_history}")
|
||
_task_history.append((_query, full_response))
|
||
print(f"Qwen2-Instruct: {full_response}")
|
||
|
||
def regenerate(_chatbot, _task_history):
|
||
if not _task_history:
|
||
yield _chatbot
|
||
return
|
||
item = _task_history.pop(-1)
|
||
_chatbot.pop(-1)
|
||
yield from predict(item[0], _chatbot, _task_history)
|
||
|
||
def reset_user_input():
|
||
return gr.update(value="")
|
||
|
||
def reset_state(_chatbot, _task_history):
|
||
_task_history.clear()
|
||
_chatbot.clear()
|
||
_gc()
|
||
return _chatbot
|
||
|
||
with gr.Blocks() as demo:
|
||
gr.Markdown("""\
|
||
<p align="center"><img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen2.png" style="height: 80px"/><p>""")
|
||
gr.Markdown("""<center><font size=8>Qwen2 Chat Bot</center>""")
|
||
gr.Markdown(
|
||
"""\
|
||
<center><font size=3>This WebUI is based on Qwen2-Instruct, developed by Alibaba Cloud. \
|
||
(本WebUI基于Qwen2-Instruct打造,实现聊天机器人功能。)</center>""")
|
||
gr.Markdown("""\
|
||
<center><font size=4>
|
||
Qwen2-7B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2-7B-Instruct/summary">🤖 </a> |
|
||
<a href="https://huggingface.co/Qwen/Qwen2-7B-Instruct">🤗</a>  |
|
||
Qwen2-72B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2-72B-Instruct/summary">🤖 </a> |
|
||
<a href="https://huggingface.co/Qwen/Qwen2-72B-Instruct">🤗</a>  |
|
||
 <a href="https://github.com/QwenLM/Qwen2">Github</a></center>""")
|
||
|
||
chatbot = gr.Chatbot(label='Qwen2-Instruct', elem_classes="control-height")
|
||
query = gr.Textbox(lines=2, label='Input')
|
||
task_history = gr.State([])
|
||
|
||
with gr.Row():
|
||
empty_btn = gr.Button("🧹 Clear History (清除历史)")
|
||
submit_btn = gr.Button("🚀 Submit (发送)")
|
||
regen_btn = gr.Button("🤔️ Regenerate (重试)")
|
||
|
||
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
|
||
submit_btn.click(reset_user_input, [], [query])
|
||
empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True)
|
||
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
|
||
|
||
gr.Markdown("""\
|
||
<font size=2>Note: This demo is governed by the original license of Qwen2. \
|
||
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
|
||
including hate speech, violence, pornography, deception, etc. \
|
||
(注:本演示受Qwen2的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
|
||
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
|
||
|
||
demo.queue().launch(
|
||
share=args.share,
|
||
inbrowser=args.inbrowser,
|
||
server_port=args.server_port,
|
||
server_name=args.server_name,
|
||
)
|
||
|
||
|
||
def main():
|
||
args = _get_args()
|
||
|
||
model, tokenizer = _load_model_tokenizer(args)
|
||
|
||
_launch_demo(args, model, tokenizer)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|