Qwen2/docs/source/framework/function_call.rst

132 lines
4.6 KiB
ReStructuredText

Function Calling
================
We offer a wrapper for function calling over the dashscope API and the
OpenAI API in `Qwen-Agent <https://github.com/QwenLM/Qwen-Agent>`__.
Use Case
--------
.. code:: py
import json
import os
from qwen_agent.llm import get_chat_model
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit='fahrenheit'):
"""Get the current weather in a given location"""
if 'tokyo' in location.lower():
return json.dumps({
'location': 'Tokyo',
'temperature': '10',
'unit': 'celsius'
})
elif 'san francisco' in location.lower():
return json.dumps({
'location': 'San Francisco',
'temperature': '72',
'unit': 'fahrenheit'
})
elif 'paris' in location.lower():
return json.dumps({
'location': 'Paris',
'temperature': '22',
'unit': 'celsius'
})
else:
return json.dumps({'location': location, 'temperature': 'unknown'})
def test():
llm = get_chat_model({
# Use the model service provided by DashScope:
'model': 'qwen-max',
'model_server': 'dashscope',
'api_key': os.getenv('DASHSCOPE_API_KEY'),
# Use the model service provided by Together.AI:
# 'model': 'Qwen/Qwen2-7B-Instruct',
# 'model_server': 'https://api.together.xyz', # api_base
# 'api_key': os.getenv('TOGETHER_API_KEY'),
# Use your own model service compatible with OpenAI API:
# 'model': 'Qwen/Qwen2-72B-Instruct',
# 'model_server': 'http://localhost:8000/v1', # api_base
# 'api_key': 'EMPTY',
})
# Step 1: send the conversation and available functions to the model
messages = [{
'role': 'user',
'content': "What's the weather like in San Francisco?"
}]
functions = [{
'name': 'get_current_weather',
'description': 'Get the current weather in a given location',
'parameters': {
'type': 'object',
'properties': {
'location': {
'type': 'string',
'description':
'The city and state, e.g. San Francisco, CA',
},
'unit': {
'type': 'string',
'enum': ['celsius', 'fahrenheit']
},
},
'required': ['location'],
},
}]
print('# Assistant Response 1:')
responses = []
for responses in llm.chat(messages=messages,
functions=functions,
stream=True):
print(responses)
messages.extend(responses) # extend conversation with assistant's reply
# Step 2: check if the model wanted to call a function
last_response = messages[-1]
if last_response.get('function_call', None):
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
'get_current_weather': get_current_weather,
} # only one function in this example, but you can have multiple
function_name = last_response['function_call']['name']
function_to_call = available_functions[function_name]
function_args = json.loads(last_response['function_call']['arguments'])
function_response = function_to_call(
location=function_args.get('location'),
unit=function_args.get('unit'),
)
print('# Function Response:')
print(function_response)
# Step 4: send the info for each function call and function response to the model
messages.append({
'role': 'function',
'name': function_name,
'content': function_response,
}) # extend conversation with function response
print('# Assistant Response 2:')
for responses in llm.chat(
messages=messages,
functions=functions,
stream=True,
): # get a new response from the model where it can see the function response
print(responses)
if __name__ == '__main__':
test()